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Abstract:

The toxicity of Nonylphenol, an emerging pollutant, on the common South American
toad Rhinella arenarum was stage and time dependent, thus Median Lethal
Concentrations (LC50) for acute (96h), short-term chronic (168h) and chronic exposure
(336h) were 1.06; 0.96 and 0.17 mgNP/L from embryonic period (S.4), whereas for
exposure from larvae (S.25), LC50 remained constant at 0.37 mgNP/L from 96h to
168h, decreasing to 0.11 mgNP/L at 336h. NOEC-168h for exposure from embryos was

Abbreviations:
AS, AMPHITOX solution; LC50, Median Lethal Concentration; NOEC, No Observed Effect

Concentration.
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0.025 mgNP/L. The Teratogenic Potential (NOEC-Iethality/NOEC-sublethal effects)
was 23 times higher than the threshold value, indicating a high risk for embryos to be
malformed in absence of significant lethality and representing a threat for the species
conservation. By comparing with other amphibians, the early development of R.
arenarum was very sensitive to NP. The results highlight the relevance of extending the
exposure time and look for the most sensitive stage in order to perform the bioassays for

conservation purposes.

Keywords: Amphibians, embryo-larval development, stage-dependent susceptibility,

teratogenesis, nonylphenol

1. Introduction

Nonylphenol polyethoxylate (NPEO), synthesized in 1940, is a surfactant with
exceptional performance and widely used in industrial, commercial and household
applications such as detergents, emulsifiers, wetting and dispersing agents, antistatic
agents, demulsifiers and solubilisers (Soares et al., 2008). Some of the industrial
applications, include pulp and paper, textiles, coatings, lube oils and fuels, metals and
plastics (Ying et al., 2002). Nonionic surfactants, such as NPEO, are routinely included
as wetting agents and dispersants in pesticide formulations. As one of the major
degradation products of NPEO, Nonylphenol (NP) enters the aquatic environment
through wastewater discharges but also by drift and runoff of applied products in the
field (Naylor, 1995). Once NP reaches the atmosphere, it can be transported to aquatic
and terrestrial ecosystems by wet deposition (Fries and Puttmann, 2004). Significant
amounts of these alkylphenols were reported in river waters, groundwater, surface

waters, and drinking water sources, and even in aquatic sediments (Fernandez et al.,
2
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2007). NP has been regarded as the most critical metabolite of alkylphenol
polyethoxylates because of its enhanced resistance to biodegradation, and its toxicity
and ability to bioaccumulate in aquatic organisms (Arukwe et al., 2000; Tyler et al.,
1998). NP is considered an endocrine disruptor, as it was found to mimic the natural
hormone 17B-oestradiol (Soares et al., 2008). NP is an emerging pollutant, not currently
covered by water-quality regulations, and is thought to be potential threat to ecosystems

and human health (Farré et al., 2008).

In Argentina, the presence of NP was reported in some creeks and rivers of Buenos
Aires province, reaching a maximal value of 27 pg/L in Moron creek (Babay et al.,
2013; Babay et al., 2008). Although Europe has followed the recommendation of
phasing out the use of alkylphenol ethoxylates surfactants in domestic and industrial
cleaning agents and Canada has recently adopted NP guidelines for the protection of
aquatic life, in the case of Latin American countries, the use of alkylphenol ethoxylates

is still completely unrestricted.

Most toxicity studies are performed in specific periods of the life cycle, but treating
amphibian organisms at two different early life periods, embryos and larvae, allows the
evaluation of an eventual differential susceptibility, providing possible explanations
based on developmental features and toxicity mechanisms (Aronzon et al., 2011b;
Greulich and Pflugmacher, 2003). Furthermore, it is very relevant to identify the most
sensitive period to the noxious agent and select it as the most appropriate to perform

toxicity bioassays and provide recommendations on safe environmental concentrations.

An alarming amphibian population decline has been reported worldwide since the 60°s
(Simms, 1969). There are several hypotheses to explain this phenomenon, including
toxicity produced by chemical contaminants (Wake and Vredenburg, 2008). Several

lines of evidences indicate that this fact could be related to their high susceptibility to
3
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contaminants, in particular during early life stages (van der Schalie et al., 1999). The
risk of amphibians to get adverse effects might be increased by their preference to breed
in shallow, lentic, or ephemeral water bodies, in which pollutants might be concentrated
(Natale, 2006). Moreover, breeding and larval development of amphibians occurs in
spring and summer, coincident with the application of pesticides and fertilizers on
agricultural lands (Mann et al., 2009). Particularly, the South American toad Rhinella
arenarum, is one of the species with the highest incidence of malformations as it was
reported in a morphological study of amphibians from the middle region of Argentina
(Peltzer et al., 2010). Projection of R. arenarum population size showed a tendency to
extinction in sites dominated by crops in the central region of the Cordoba Province,

Argentina (Bionda et al., 2013).

Several toxicity studies have mainly reported acute effects of NP on exotic amphibian’s
species in specific periods of their early life cycle as the cases of Rana spenocephala,
Bufo boreas, Crinia insignifera, Litoria adelaidensis and Xenopus laevis (Bridges et al.,
2002; Mann and Bidwell, 2000). Nevertheless, there is no data on the toxic effects of
NP in the embryo-larval development of native amphibian species of South America as

Rhinella arenarum.

The main aim of present study was to evaluate the toxic effects of NP on the South
American toad, Rhinella arenarum, reporting lethal and sublethal effects on two
different developmental periods, embryos and larvae in search of an eventual stage-
dependent susceptibility. Moreover, the ecological risk for the species was calculated.
Results were discussed in relation to environmental concern and the toxicity

mechanisms of the substance.
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2. Materials and methods.

2.1 Rhinella arenarum embryos and larvae.

Healthy Rhinella arenarum adults, weighing approximately 200 - 250 g were obtained
in Lobos (Buenos Aires province, Argentina: 35° 11° S; 59° 05" W). Adults were
maintained in aquariums with AMPHITOX (AS) solution at a 20 £ 2°C, alternating 12 h
light/dark cycles for short periods. AS composition is (in mg/L): Na* 14.75; C1'22.71;
K" 0.26; Ca*’ 0.36; HCO3™ 1.45. Ovulation of R. arenarum females was induced by
means of an intraperitoneal injection of a suspension of one homologous hypophysis in
ImL per female (Pisan6, 1957), plus 500 IU of human chorionic gonadotropin
(GONACOR 5000 Massone®) (Mann and Bidwell, 2000). Oocytes were fertilized in
vitro with sperm’s suspensions prepared by mincing one testicle in 1 ml of AS. Each
clutch was obtained by a unique and the same pair of adults. After fertilization, embryos
were kept in AS at 20 & 2°C until blastula (S.4) and larval (S.25) stages. Stage of
embryos and larvae were defined according to Del Conte and Sirlin (1951). Embryos
were dejellied by means of a 2-min treatment with 2% thioglycolic acid solution,
neutralized at pH 7.2-7.4 with 1.35 mL of concentrated NaOH solution every 100 mL in
AS, and then thoroughly washed (Herkovits and Pérez-Coll, 1999). Embryos and larvae
were kept in shallow plastic containers with 5 L of AS until their use in the bioassays.
All experiments were conducted in accordance to international standards on animal

welfare (Canadian Council on Animal Care in Science, 1993)

Page 5 of 30



2.2 Test solutions.

A NP (Fluka, tecnical grade, purity 96.9 %. CAS number: 84852-15-3, marketed by
Sigma-Aldrich) stock solution of 45.4 g/L. was prepared by dissolving the
corresponding mass, in acetone. A second stock solution of 800 mg NP/L was prepared
by dissolving the corresponding volume of the first one in acetone. Seven to nine test
solutions, ranging in concentrations between 0.0025 and 4 mg NP/L, were prepared by

diluting the corresponding volume of the second stock solution in AS.

NP in test solutions was quantified by reverse-phase HPLC coupled to fluorescence
detection at excitation and emission wavelengths of 230 and 300 nm, respectively. A C-
8 column (250 x 4.6 mm, 5 pm, Grace, USA) and isocratic elution with MeOH/H,0O
(80:20) were employed (Babay et al., 2013; Babay et al., 2008). The errors between

nominal and measured concentrations did not exceed 10%.

2.3 Toxicity Experimental Protocols.

Rhinella arenarum embryos and larvae obtained from six different clutches were
continuously exposed to NP from early blastula (S.4) and complete operculum (S.25)
stages onwards for acute (96 h), short-term chronic (168 h) and chronic (336 h) periods

(US EPA, 2002).

For each experimental condition, triplicate batches of 10 embryos or larvae were placed
in covered 10-cm-diameter glass Petri dishes containing 40 mL of test solution. Each

experimental design accordingly included, together with a control group exposed to AS
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only, a solvent control group that was exposed to AS containing acetone 0.5% v/v, the
highest concentration used for NP test solutions (ASTM, 1993). Lethal and sublethal
effects were evaluated and dead individuals were removed every 24 h. Test solutions
were renewed every other day and temperature was maintained at 20 & 2°C. Larvae
were fed with 6 £0.5 mg of balanced fish food TetraColor® ad libitum for 24 h every

other day.

Sublethal effects were studied with Stereoscopic Microscopy. Images of embryos and
larvae were digitally recorded with a Sony DSC-S90 camera mounted on a Zeiss Stemi
DV4 stereoscopic microscope. Sublethal effects were classified into different categories
as abnormal development, retarded or delayed stage development, reduced body size,
reduced tail size; and other morphological abnormalities as axial flexures, extrusion of
the fin axis, agenesia/underdeveloped gills, malformed mouth/adhesive structures,
hydropsy and others, which were identified according to the ‘‘Atlas of
abnormalities’’(Bantle et al., 1992). After 4% formalin fixation of individuals exposed
for 168 h to different NP concentrations, total lengths, as straight line distances, were
measured from the tip of the snout to the tip of the tail under the stereoscopic
microscope. As a measure of developmental hazard, the teratogenic potential (TP)
(Aronzon et al., 2011a) was estimated as the ratio between the NOEC value for lethality
and sublethal effects and it was compared with the maximal value of 1.5 (ASTM, 1993)
which implies large separation of the mortality and malformations concentration ranges
and, therefore, a great potential for all embryos to be malformed in absence of
significant embryo mortality. Behavioral alterations such as abnormal fast rotations
which are a sign of neurotoxic stress; lying on the lateral or dorsal side, abnormal
breathing, feeding and swimming patterns were evaluated (Denoél et al., 2012). Smooth
movements of the Petri-dishes, followed by stimulation with a light source were done.

7
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In case of no response, soft mechanic stimulation with a glass rod was made and finally

heartbeat was checked under Zeiss Stemi DV4 stereoscopic microscope.

Ecological risk can be numerically estimated using the Hazard Quotient (HQ) approach
(US EPA, 1998) taking the worst case scenario based on the "precautionary principle"
to provide a more meaningful, yet conservative, estimation of the effect. In that way, the
ratio between an Expected Environmental Concentration (EEC) and a standard toxicity
endpoint (e.g. LC50) was obtained. We estimated a HQ for NP exposure to Rhinella
arenarum embryos and larvae based on the maximal NP concentrations reported in
Buenos Aires (Babay et al., 2013). The standard toxicity endpoint was the LC50s
calculated for each developmental period at different exposure times. HQ was also
calculated, for some cases, using a sublethal effect value (LOEC; NOEC, EC) as

standard toxicity endpoint.

After HQ was calculated, it was compared with the USEPA Level of Concern (LOC).
The LOC is a policy tool that the Agency uses to interpret the risk quotient and analyze
the potential risk to non-target organisms and the need to consider regulatory action.
The LOC value for risk is 1. If HQ>1, harmful effects are likely to result from the

contaminant in question.

2.4 Statistical analysis.

Lethality data were statistically analyzed by the USEPA PROBIT Program (US EPA,
1988).Toxicity Profiles (TOPs), as isotoxicity curves (Herkovits and Helguero, 1998)
were plotted based on LC50 at different times. To compare LC50 values, differences

were considered to be statistically significant when the ratio of the higher and the

8
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lower LC50 exceeded the corresponding critical value established by the American
Public Health Association et al. (APHA, 2005). To obtain NOEC and LOEC values
the percentages of affected individuals were compared using Pearson’s chi-square
(%) test to establish significant differences between exposed and control embryos.
Kruskal-Wallis analysis was used to assess significant differences of the lengths of
embryos exposed for 168 h to different conditions. Multiple comparisons were
performed using Dunn test. Differential sensitivity inter-clutches was expressed as a

coefficient of variation.

3. Results.

3.1. Embryo toxicity.

Lethal toxicity of NP on Rhinella arenarum embryos exposed from blastula stage (S.4)
onwards was time-dependent. NOEC-24 h and 48 h remained at 1.5 mg/L, while NOEC
-168 h and 336 h diminished to 0.75 and 0.025 mg NP/L, respectively. Acute toxicity
increased from a LC50-72 h of 1.5 mg NP/L to 1.06 mg NP/L at 96 h. Toxicity was
greatest at the end of short-term chronic period with a LC50 of 0.96 mg NP/L (Figure
1). When exposure was extended for a chronic period, toxicity increased even more to
reach a LC50-336 h=0.17 mg NP/L. There were no differences in susceptibility among

clutches, and the coefficients of variation were always lower than 9%.

3.2. Larval toxicity.

NP toxicity on Rhinella arenarum larvae, exposed from the beginning of larval
development (S.25) was not time-dependent from 72 h to 168 h (Figure 1). In contrast
to individuals exposed from the embryonic period, there were no significant differences

in LC50 for larvae along the exposure time, and LC50 remained constant at 0.37 mg
9
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NP/L up to 168 h. Nevertheless, when exposure was extended for a chronic period,
toxicity increased to a LC50-336 h=0.11 mg NP/L. NOEC-24 h and 48 h were 0.45 and
0.4 mg/L respectively, while NOEC from 72 h to 168 h remained constant at 0.25 mg
NP/L, and increased to a NOEC-336 h of 0.005 mg NP/L. There were no differences in
susceptibility between clutches of larvae, and the coefficients of variation were always

lower than 17%.

3.3. Sublethal effects.

Rhinella arenarum embryos exposed to NP from blastula stage (S.4) onwards showed
different sublethal effects which were concentration-dependent. The main abnormalities
of exposed embryos from blastula stage (S.4) were persistent yolk plugs that led to
failed gastrulation process, within the first hours of exposure. Then, the main sublethal
effects are summarized in table 1 and were: reduced body/tail sizes, microcephaly,
underdeveloped gills, axial flexures, different edemas, like cardiac/pericardial edema,
malformed mouth/adhesive structures, gut miscoiling, and atypical extrusion of the
caudal fin axis (Figure 2). Moreover, a conspicuous retarded or delayed stage
development was observed. Thus, when control embryos were at gill circulation stage
(S.20, 96-120 h post-fecundation) embryos exposed to 1 and 1.5 mg NP/L were delayed
in muscular response (S.18, 48-72 h post-fecundation) and heart beat (S.19, 72-96 h
post- fecundation) stages, respectively. The statistical analysis of the total lengths of
embryos exposed to NP for 168 h, when control embryos reach larval stage (S.25),
showed that individuals exposed to 0.5 and 1 mg NP/L were significantly (p<0,05 and
p<0,001, respectively) shorter than controls (Figure 3). LOEC-24 h was 1.5 mg NP /L,
decreasing to 0.5 mg NP/L at 96 h and 0.05 mg NP/L at 168 h. NOEC-24 h for sublethal

effects was 0.75 mg NP/L, decreasing to 0.25 mg NP/L at 96 h and to 0.025 mg NP/L at
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168 h. EC50-96 h for sublethal effects was 0.97 (0.90-1.19) mg NP/L. TP-96 h and 168

h were 3.6 and 34.4, respectively.

Rhinella arenarum larvae exposed to NP from the complete operculum stage (S.25) onwards
showed a high incidence of axial flexures, fins with irregular borders, blisters and edemas
(Figure 2h) at short exposure times. Since the first five hours of exposure, axial flexure
incidence increased from 30% to 100% of larvae exposed from 0.24 to 0.4 mg NP/L,

respectively.

No differences were observed between AS controls and acetone controls for all

treatments, neither in mortality nor in the percentage of abnormalities.
3.4. Hazard Quotients.

The Hazard Quotients (HQ) for Rhinella arenarum exposed from embryos (S.4) and
larvae (S.25) to NP were calculated at different exposure times (Figure 4) based on the
maximal NP concentration reported in Buenos Aires province (27 ug/L) (Babay et al.,
2013). HQ obtained from the LC50s for both embryos and larvae treatment remained
under the LOC value. HQ values for embryos, exposed from blastula stage (S.4)
onwards, increased along the exposure time. HQ for larvae, exposed from de complete
operculum stage (S.25) onwards, remained constant along the short-term chronic

exposure time but showed a high increase from the 192 h onwards.

HQ obtained from the LOEC value of sublethal effects for embryos remained under the
LOC value at 0.018; 0.054 and 0.54 at 24 h, 96 h and 168 h, respectively. HQ calculated
from NOEC value of sublethal effects were 0.036 and 0.108 at 24 h and 96 h, while at

168 h this value increased to 1.08, reaching the LOC value.

4. Discussion
11
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The development of the toad Rhinella arenarum was highly sensitive to NP.
Particularly; larvae were six times more sensitive than embryos. NP also caused
sublethal effects on the normal growth and development of exposed individuals.

The toxicity of NP on embryos exposed from blastula stage onwards was time-
dependent; in that sense, the LC50 significantly decreased 1.5 times up to 120 h of
exposure. In line with toxicity of NP to Xenopus laevis (Mann and Bidwell, 2000),
present study shows evidences of a stage-dependent susceptibility to NP. Although the
early organogenic period has been shown as the most sensitive to different noxious
agents (Aronzon et al., 2011a; Aronzon et al., 2011b; Sztrum et al., 2011), in this case,
larvae resulted almost six times more sensitive than embryos as consequence of NP
exposure. This increased sensitivity at larval period was also observed in Rana
clamitans, R. pipiens, R. sylvatica, Bufo americanus and Xenopus laevis exposed to
different glyphosate formulation with different surfactants (Edginton et al., 2004; Howe
et al., 2004). One of the possible explanations given for the higher tolerance is that
during the embryonic development, embryos receive nourishment from a yolk sac and
they do not consume potentially contaminated food sources (Howe et al., 2004).
Moreover, embryos start to increase their contact with the exposure medium when reach
the gill circulation (S.20) and open mouth (S.21) stages. Indeed, maximal contact with
the exposure medium reaches when individuals are able to be feed, in this study
individuals were fed from complete operculum stage (S.25) onwards, coincident with
the second significant increase in toxicity at 192 h. Another possible reason is the
exclusion of the chemical by embryonic membranes (Edginton et al., 2004). Another
reason for this differential sensitivity is a lack or insensitivity of target organs in the

embryonic stages compared to the larval period, leading to differential exposure times
12
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of sensitive target organs (Edginton et al., 2004). It is noteworthy to point out that when NP

exposure was extended from the early developmental stage until 336 h, toxicity was increased
more than 10 times. This higher susceptibility might be related to the inclusion of the larval

period in the exposure.

Even though larvae were the most sensitive, toxicity from the beginning of larval
development did not show significant changes from 72 h up to 168 h, indicating that NP
toxicity reaches its maximum value within the first 72 h. This pattern of fast maximal
toxic effect of NP on Rhinella arenarum larvae is similar to the results reported for
metals such as copper and cadmium (Aronzon et al., 2011b; Pérez-Coll and Herkovits,
1996) and for organic compounds as the herbicide 2,4-Dichlorophenoxiacetic acid
(Aronzon et al., 2011a). Nevertheless, the toxicity significantly increased when
exposure was extended to a chronic period of 336 h. Despite that most toxicity studies
focus just on acute effects in a certain period of the life cycle, this study points out the
importance of performing toxicity bioassays at different stages of the life cycle of a
species and for an extended term. These allow identifying the most sensitive period to

recommend tolerance thresholds, conservative and realistic for the species preservation.

NP proved to be teratogenic, as the Teratogenic Potential (TP) reached values 23 times
higher than the value based on ASTM (ASTM, 1993), which implies a high risk for
embryos to be malformed in the absence of significant embryonic lethality. The large
difference between the lethal and sublethal concentrations contributes to consider
sublethal effects as a relevant endpoint for population viability as they might reduce the
fitness of individuals, at least to R. arenarum. Park et al (2010) reported no
teratogenicity in Bombina orientalis embryos exposed just to one sublethal
concentration ten times lower than the LC50-96 h. On the other hand, Mann and
Bidwell (2000) indicated either no or low teratogenicity in X. laevis, Litoria

13
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adelaidensis and Crinia insignifera. In that sense, R. arenarum was five, six and nine
times more sensitive than Xenopus laevis (LC50-96 h= 3.9 mg/L), Crinia insignifera
(LC50-140 h=6.4 mg/L) and Litoria adelaidensis (LC50-140 h= 9.2 mg/L), respectively
(Mann and Bidwell, 2000). Although the maintaining media of FETAX and
AMPHITOX tests have different salinity and temperature conditions (Herkovits and
Pérez-Coll, 2003), which might modify toxicity results, these significant differences

might be rather related to the species” specific sensitivity.

Some of the main sublethal effects observed in the study were retarded or delayed stage
development and reduced body length, this last one was significant and important on
embryos exposed to NP from blastula stage (S.4) to concentrations as low as 0.5 and 1
mg NP/L at 168 h. These effects are in agreement with other studies showing that
inhibition of body growth is one of the most sensitive indicators of developmental
toxicity (Richards and Kendall, 2003; Sayed et al., 2012). Moreover, Park et al. (2010)
and Bevan et al (2003) have also shown growth inhibition in Bombina orientalis and
Xenopus laevis. Microcephaly, underdeveloped gills, axial flexures, different kinds of
edemas, malformed mouth and adhesive structures, and gut miscoiling, were also
observed. These anomalies may be considered as nonspecific effects of this toxic agent,
given that they were reported for metals (Aronzon et al., 201 1b; Pérez-Coll and
Herkovits, 1990) and other organic compounds on Rhinella arenarum development
(Aronzon et al., 2011a; Hutler Wolkowicz et al., 2014; Pérez-Coll and Herkovits, 2004;
Svartz et al., 2012 ). These sublethal effects were also reported for Xenopus laevis
embryos and Bufo regularis larvae exposed to NP (Sayed et al., 2012; Sone et al.,
2004). In contrast, exposure to NP also caused an atypical extrusion of the fin axis
(Figure 2.), which has been also observed in Rana pipiens exposed to a commercial
glyphosate pesticide (Howe et al., 2004), but never reported for any of many

14
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physicochemical agents evaluated on R. arenarum. Some authors suggest that this
extrusion might be cause by an inhibition in the synthesis of collagen, which would
cause a defect in the development of early vertebral primordial (Birge et al., 1983),
nevertheless, this abnormality was also observed in the body axis of larvae exposed
from the end of embryo development (S.25) at short time exposures. Other authors have
pointed out that this abnormality in the tail might be due to myotome disruption caused
by an inhibition of acetylcholinesterase activity (Bonfanti et al., 2004; Li, 2008).
However, this sublethal effect might be related to any mechanism capable to cause an
excessive flow of calcium, which can generate an overstimulation of myocyte
contractile apparatus and even muscle necrosis (Leonard and Salpeter, 1979). It has
been reported that exposure of resting skeletal muscle cells to NP might cause a loss of
calcium balance, possibly due to the alteration of the cell membrane and an adverse
effect on the active calcium transport (Gong et al., 2008; Kirk et al., 2003; Michelangeli

et al., 1990).

The teratogenic effects and the short time needed to be observed in NP exposure,

highlight the relevance to consider these parameters in risk assessment.

Despite the toxicity of NP on native amphibian species has not been reported, Rhinella
arenarum were much more sensitive than most of amphibians. These results strongly
support the importance of assessing the toxicity of different noxious agents on native
species, such as the common South American toad, R. arenarum. This provides a
representative overview of the implications of xenobiotic contamination on ecosystems
and species of Argentina, in order to make decisions, set thresholds, and develop

management plans in line with the region situation.

The HQs obtained for the local scenario and their comparisons with the LOC value

showed that, at least for the NP concentration reported in Buenos Aires province (Babay
15
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et al., 2013) there is little threat for R. arenarum populations. Coinciding with the
breeding season, NP might present seasonal variations with higher concentrations in the
summer, due to an increase in microbial activity at warmer temperatures (Li, 2008).
Besides, environmental levels might be higher in some areas as the efficiency of water
treatment plants at removing NP was found to be highly variable ranging from 11% to
99% depending on the type of unit treatment process employed (Berryman et al., 2004).
In particular, NP is produced during the NPEO degradation process and is often find it
in higher concentrations in the effluents than in the influents (Soares et al., 2008).
Moreover, HQ showed an important increase at chronic period. It is noteworthy that
despite LC50 at 336 h for embryos and larvae did not show significant differences, HQs
for larvae at 336 h were 1.5 times higher than the respective values for embryos. This
fact highlights the importance of reporting the most sensitive period of a life cycle to a

determined chemical.

These results are very important for Argentina and other developing countries with large
agricultural areas because nonionic surfactants are commonly included as wetting
agents and dispersants in pesticide formulations. Despite that some active constituents
of pesticide are reported of low toxicity, the additive surfactant components may be a
health risk to aquatic fauna, as is shown in this study for NP, especially in the case of
amphibians because pesticides are applied around or over standing or ephemeral waters

with a low capacity for dilution (Aronzon et al., 2011a; Mann and Bidwell, 1999).

This study highlights the toxicity of NP on embryos and larvae, not only in a direct way
for the survival of the common toad, but it also can indirectly affect the normal
development and behaviour of this native amphibian species of South America,

affecting the ability of organisms to avoid predation and subsequently impairing their
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ability for future reproduction (Carey and Bryant, 1995; Little et al., 1990) contributing

to the decline of Rhinella arenarum populations.

5. Conclusion

The early development of the toad Rhinella arenarum was very sensitive to NP and
showed an increased susceptibility from embryonic to larval development. The
xenobiotic also caused a diversity of sublethal effects, including an atypical extrusion of
the fin axis. By comparing with other amphibians, it is one of the most sensitive species

to NP.

These results are very important for countries with large agricultural areas due to the use
of nonionic surfactants as wetting agents and dispersants in pesticide formulations, and
because the increasing environmental concentrations of this emerging pollutant, as a
consequence of their still completely unrestricted use. Considering the lethal and
sublethal effects caused by NP, this study shows the health risk that surfactants might
represent to the native toad Rhinella arenarum populations, despite that some active

constituents of pesticides are reported of low toxicity.
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Figure 1. Lethal Concentration 50 (LC50) of Nonylphenol in Rhinella arenarum
embryos and larvae exposed from early blastula stage (S.4) and complete operculum
stage (S.25) onwards, respectively. Bars show 95% confidence intervals.

Table 1. Summary of the main sublethal effects of embryos exposed for 96 h to different
Nonylphenol concentrations. Notice that an individual might present more than one
abnormality.

Figure 2. Panoramic views of malformed larvae of Rhinella arenarum as a result of
Nonylphenol exposure (Stereoscopic Microscopy): a) Control. Embryos become larvae
by continuous exposure from the blastula stage for 168 h to: b) 0.25 mg NP/L, c), d)
0.75 mg NP/L, d), ) 0.75 mg NP/L; f) 0.75 mg NP/L, detail of the extrusion of the
caudal fin, g) 1 mg NP/L. Larvae exposed for 5 h to: h) 0.45 mg NP/L. Observe the
reduced body size, axial flexures (af), microcephaly (m), gut miscoiling (gm),
underdeveloped gills (ug), abdominal edema (ae), generalized edema (e) and the
extrusion of the fin axis (efa). Scale: 1 mm.

Figure 3. Effects of Nonylphenol on the length of Rhinella arenarum embryos exposed
to different Nonylphenol concentrations for 168 h from early blastula stage (S.4)
onwards. *Significant differences from control (p <0.05).

Figure 4. Hazard Quotients (HQ) of Nonylphenol in Rhinella arenarum embryos and
larvae exposed from early blastula stage (S.4) and complete operculum stage (S.25) for
336 h. HQ-based on the maximal NP concentration reported in Buenos Aires province.
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Highlights:

¢ Significant lethal and sublethal effects of Nonylphenol on Rhinella arenarum

embryos and larvae were reported.
e Stage-dependent susceptibility to Nonylphenol was informed.
¢ A high teratogenic potential of Nonylphenol was reported.

e The study showed the high risk that Nonylphenol might represent to amphibian’s

populations.
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Figure 2 black and white
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Figure 3
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Table 1

(mg NP/L)

Main abnormalities (%) Control 0.25 0.75 1

Abmormal development 10 11 37 100
Delayed development 0 0 0 100
Reduced body size 7 7 38 100
Reduced tail size 0 0 38 100
Axial flexures 7 11 38 100
Extrusion of the fin axis 0 0 0 100
Agenesia/underdeveloped gills 0 0 38 86
Malformed mouth/adhesive structures 0 0 38 100
Hydropsy 0 0 38 86
Others 3 7 20 40
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