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Resumen

Las proteinas son moléculas de primordial importancia en, virtualmente, todos los procesos
celulares que sustentan la vida. Su relevancia se debe, principalmente, a su capacidad de
ejercer una vasta lista de funcionalidades por medio de la unién y/o interaccién selectiva con
otras moléculas. Estas interacciones ocurren en interfaces proteina-molécula especificas, de
naturaleza tridimensional, y se caracterizan por poseer una dindmica de tipo llave-cerradura.
Mas alla de que es correcto asumir que dichas interacciones son en esencia complejas, en
muchos casos contienen pequefios componentes lineales, y por lo tanto pueden ser aproxi-
madas por medio de una interaccién de tipo péptido-proteina.

Un caso particular de interaccién péptido-proteina es la uniéon de péptidos al Complejo
Mayor de Histocompatibilidad (MHC en inglés). El MHC posee un rol clave en el sistema
inmune adaptativo de los vertebrados, principalmente gracias a su capacidad de unién y
presentacién de péptidos antigénicos al espacio extracelular. Luego de dicha presentacion,
Linfocitos T pueden interactuar con estos MHCs vy, si se satisfacen ciertas condiciones, des-
encadenar una respuesta inmune.

De lo antedicho, se torna evidente que existe una fuerte relacién entre la inmunidad de
los vertebrados y el conjunto de todos los posibles ligandos de MHC. En los tltimos afios,
a dicho conjunto se lo ha denominado Inmunopeptidoma, y el consecuente desarrollo de
herramientas cientificas para su muestreo e interpretacién ha dado a luz al campo de la
Inmunopeptidémica.

El trabajo aqui presentado comprende el desarrollo de diversas herramientas computa-
cionales de Inmunopeptidémica, en la forma de algoritmos y procesos de Aprendizaje Au-
tomatico, capaces de ser implementados en la identificacién y explotacién de la informacién
contenida en un Inmunopeptidoma de interés.
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Summary

Proteins are molecules of paramount importance in virtually all cellular processes sustaining
life. Their relevance rests, to a high degree, in their capacity of exerting a vast range of
functionalities by means of selectively binding to (and/or interacting with) other molecules.
These interactions occur in specific three dimensional protein-molecule interfaces, and are
characterised by a key-lock type of mechanism. While it is safe to assume that such inter-
actions are complex in nature, in many cases they contain a short linear component, and
may be approximated by means of a protein-peptide interaction.

A particular case of protein-peptide interactions is the binding of peptides to the Major
Histocompatibility Complex (MHC) protein. The MHC is a key player in the adaptive cellu-
lar immune system of vertebrates, mostly thanks to its capability of binding and presenting
antigenic peptides to the extracellular space. After such presentation, T lymphocytes may
interact with the loaded MHCs and, if certain conditions are met, an immune response might
be fired.

From what is stated above, it becomes clear that a strong bond exists between the im-
munity of vertebrates and the set of all possible MHC binding peptides. In recent years,
such a set has been termed the Immunopeptidome, and the consequential development of
scientific tools that enable its sampling and interpretation has given birth to the field of
Immunopeptidomics.

The work presented in this manuscript comprehends the development of several in-silico
scientific tools for Immunopeptidomics, shaped in the form of Machine Learning algorithms
and pipelines that can be readily deployed to identify and exploit the information contained
within a target Immunopeptidome.
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Organization of this Thesis

In the first chapter of this thesis, basic concepts of Immunology are briefly described.
The role of MHC and the immunopeptidome in the context of the adaptive immune re-
sponse are also addressed. Then, the field of immunopeptidomics and its importance in
the sampling of immunopeptidomes are introduced. Different aspects of Machine Learn-
ing (ML) are afterwards discussed, with a special emphasis on Artificial Neural Networks
(ANNS) training and validation. Finally, the utilization of ANNs in the task of predicting
peptide binding to MHC, under the paradigm of Immunological Bioinformatics, is described.

The second chapter exhibits how two in-house ML algorithms (GibbsCluster and
NNAlign) can be applied jointly in order to extract peptide-MHC binding motifs from im-
munopeptidomics datasets and to train models that enable the prediction of peptide binding
to MHC.

The third chapter presents NNAlign  MA, a novel artificial neural network algorithm
that extends the capabilities of NNAlign and drastically improves the identification of MHC
binding motifs from immunopeptidomic datasets, while also boosting peptide-MHC binding
predictions.

The fourth chapter introduces NetMHCpan-4.1 and NetMHCIIpan-4.0, two state-of-
the-art ANN models trained to predict peptide-MHC binding interactions, built on top of
the NNAlign MA engine, which outperformed competitors and were released to the scien-
tific community as public web-servers.

The fifth chapter dives into the Deep Learning field in order to explore possible al-
ternative approaches for the task of MHC motif discovery. To do so, an original take on
1-dimensional convolutional neural networks is deployed and benchmarked for peptide-MHC
binding data.

Taken as a whole, the present thesis intends to provide a series of Machine Learning
algorithms, pipelines and insights for the analysis of immunopeptidomics data, both from
the perspective of binding motifs characterization and prediction of peptide-MHC binding
interactions.
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Chapter 1

Introduction

1.1 The Immune System

The immune system is a complex network of effector cells and molecules committed to the
protection of the body against invading microorganisms. It is composed of two branches:
innate and adaptive immune system, which differ in the specificity of their responses against
invasion, their speed and their mechanisms of action.

The innate immune system represents the first line of defense against pathogens. It can
be activated very rapidly on exposure to an infectious organism, and is essentially made
up of non-specific, sequential barriers that aim to destroy viruses, bacteria, parasites and
fungi before they are able to spread further. The first barrier is anatomical (i.e. epithelial
surfaces), the second is chemical (i.e. the complement system) and the third corresponds to
innate immune cells, such as macrophages, granulocytes and natural killer cells [1].

The adaptive immune system, also called acquired immunity, represents the second line
of defense against pathogens. Unlike the innate branch (which operates based on the iden-
tification of general threats) the adaptive immunity is activated by specific exposure to
pathogens, and uses immunological memory to learn about the threat and enhance the im-
mune response against it [1]. To do this, the adaptive branch relies on adaptive immune cells
called lymphocytes, that bind to antigens (molecules that stimulate the immune system) on
specific sub-sections (called epitopes) using their antigen receptors. Each lymphocyte found
in a particular host matures to carry an unique variant of a prototypical antigen receptor.
The premise is that, among the billions of lymphocytes circulating in the body at a given
time, there will always be some capable of recognizing a given foreign antigen and start a
course of action against it.

Lymphocytes are categorised into B lymphocytes and T lymphocytes (see Figure 1.1),
and have the capability of detecting and binding epitopes through their B Cell Receptors
(BCR) and T Cell Receptors (TCR), respectively [2]. Both B cells and T cells undergo
somatic rearrangements of their DNA to form clones with receptors of unique sequence and
binding specificity [3]. However, most developing B and T lymphocytes are killed off in
the process of positive and negative selection, where cells with TCRs or BCRs that have
potential for ligand binding receive signals for survival, whereas cells reacting strongly to
self antigens do not [4]. Cells that survive this process go on to survey for infection as naive
lymphocytes that, upon activation, will proliferate, develop into effector cells and enforce
their role in immunity. A subset of these activated cells will form long-lived memory cells,
with a rapid reaction time against “memorized” antigens [5]. Generally speaking, the ulti-
mate role of B and T cells is similar (detecting and removing offending entities), but their
mode of action is not. Because of this, adaptive immunity can be further divided into two
sub-branches: humoral immunity and cell-mediated immunity.

Humoral immunity is mediated by B cells, which bind to the surface of antigens in the
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Adaptive Immunity

I
v v

Humoral Immunity Cell-Mediated Immunity

Naive
T cell

CD4+ Regulatory
T cell T cell

Figure 1.1. Categories of the cell lines involved in the adaptive immune
response.

extracellular space using their BCRs [6]. Once a B cell becomes activated in the presence
of their target antigen, it becomes a plasma cell and begins to produce and secrete large
amounts of antibodies that can bind to the target antigen and neutralize it [7].

On the other hand, cell-mediated immunity is driven by T cells and their interactions
with pathogens through their TCRs. T cells can be divided into two groups depending on
their expression of either cell-surface CD4 or CDS8 receptors. CD8+ T cells are commonly
known as cytotoxic T lymphocytes, because once they strongly bind to a target cell they
secrete cytotoxic granules and perforin, which penetrate the cell’s membrane and induce
apoptosis. Conversely, CD4+ T cells are commonly referred to as helper T cells, because
after binding to target cells they play an important role in contributing to the cytokine
response that stimulates either cell-mediated immunity or humoral immunity [7]. Another
form of T cells are the regulatory T cells that have roles in dampening immune responses
against self, which is a form of tolerance [8].

From what is shown above, it can be seen that for a T cell’s effector function to become
executed, it first needs to bind a target cell. In a general sense, this means that such T cell
must have some kind of molecular target to bind to. Specifically, this target is the Major
Histocompatibility Complex (MHC) molecule, which is in charge of presenting intracellular
protein fragments (peptides) to the extracellular space [9]. MHC and its bound peptide
serve as a sort of control flag in the immune system program, since they transfer informa-
tion related to the internal state of cells to the space surrounding them. Because of this,
the immune synapse between T lymphocytes and MHC is of paramount importance, to the
point that if it is strong enough -and some other conditions are met- an immune response
might be fired.

The nature of such immune synapse can be first and foremost understood based on the
type of interacting T lymphocyte. CD8+ T cells bind to and recognize peptides bound
to MHC class I (MHC-I) molecules. On the other hand, CD44 T cells establish immune
synapses with peptide-loaded MHC class II (MHC-II) molecules [10]. However, and inde-
pendently of the type of CD expressed on the T cell’s surface, it is clear that a strong
relationship exists between the peptide-MHC complex, T cells and the immune response.

At the end of the day, the binding of peptides to MHC represents a necessary condition
for the activation of cellular immune responses, since such binding always needs to happen
prior to a possible T lymphocyte synapse. Given this intrinsic importance, the following
section will introduce key concepts related to MHC and its peptide interactions.
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1.2 The Major Histocompatibility Complex

The Major Histocompatibility Complex is a large genetic complex composed of multiple loci
that encodes for three major classes of membrane-bound glycoproteins: class I, class II, and
class IIT MHC molecules. Class I and II MHC molecules bind to a spectrum of antigenic
peptides derived from the intracellular processing and degradation of antigen molecules and
present them to the extracellular space [11]. On the other hand, class III MHC are poorly
defined structurally and functionally. They are not involved in antigen presentation, and
only a few of them are actually involved in immunity while many are signalling molecules in
other cell communications [12]. Given this, this work will focus on the MHC class I (MHC-T)
and MHC class IT (MHC-IT) molecules.

MHC-I is expressed by all nucleated cells, and presents peptides derived from intracellu-
lar degradation of endogenous proteins by the proteasome and other peptidases (Figure 1.1).
Cytosolic peptides become naturally degraded for reutilization but some of them are trans-
ported into the Endoplasmic Reticulum by the TAP transporter [13], where empty MHC-I
molecules are then loaded with such peptides and transported to the cell surface [14]. Given
this, peptides presented by MHC-I molecules represent a state-of-self for CD8+ T lympho-
cytes [15]. On the other hand, MHC-IT is expressed by Antigen Presenting Cells (APC), like
dendritic cells, B-cells and macrophages [16], and presents peptides derived from the enzy-
matic digestion of proteins taken up from extracellular space, which helps regulating how T
cells respond to an infection [17]. In particular, extracellular proteins become endocytosed
into vesicles and then merged with lysosomes, resulting in antigen degradation by the acidic
environment and wide variety of proteases of such lysosome [18].

All processed antigenic peptides bind to MHC by means of accommodating into its
molecular binding groove. The MHC binding platform is composed of two domains, which
originate from a single heavy chain (a-chain) plus a $2-microglobulin in the case of MHC
class T and from two chains (a-chain and f-chain) in the case of MHC class II (Figure 1.3,
panels A and B); both domains are anchored to the cell’s membrane by transmembrane
helices. Such MHC domains have evolved to form a slightly curved -sheet as a base and
two -helices on top, which are far enough apart to fit a peptide chain in between [19]. This
latter conformation is known as the MHC binding pocket, and is where peptides bind ac-
cording to: (1) the formation of a set of conserved hydrogen bonds between the side-chains
of the MHC molecule and the backbone of the peptide; and (2) the occupation of defined
pockets by peptide side chains [20,21]. Ttem (1) represents an unspecific binding interac-
tion, and serves mainly to stabilize the peptide backbone to the binding cleft; on the other
hand, (2) is a specific peptide-MHC binding interaction, and is a function of the peptide
composition (amino acid side-chains and positions) and the geometry, charge distribution,
and hydrophobicity of the MHC binding groove.

In MHC class I, such binding groove is closed at both ends by conserved tyrosine
residues that lead to a length restriction of the bound peptides to an average of 8-10 amino
acids [23-25] (Figure 1.3, panel C). MHC-I anchor positions are usually located at positions
2 (P2), P5/6 and P9 [20]. In contrast, MHC class II proteins usually accommodate peptides
of 13-25 residues in length in their open binding cleft [26] (Figure 1.3, panel D), and anchor
positions are generally located at P1, P4, P6, and P9 [21]. For a given MHC molecule, the
interaction preferences of its binding pocket largely determines the peptide binding speci-
ficity of such MHC [27]. Also, given the limited length of the MHC pocket, such preferences
can be represented as linear motifs and visualized with so-called sequence logos [28]. To
generate these, one may collect a list of binding peptides, align them and convert positional
amino acid frequency into an information content representation, as shown in Figure 1.4.
Doing this allows to capture and display MHC binding profiles in an intuitive and clear way.

The repertoire of MHC binding preferences is vast and diverse, principally thanks to
the high variation in the residues defining the binding groove between different MHCs. In
essence, such variance occurs because MHC is: (1) polygenic, since it contains several dif-
ferent MHC-I and MHC-II genes, and this means every individual possesses a set of MHC
molecules with variable ranges of peptide-binding specificities; and (2) highly polymorphic,
which means there are multiple variants -or alleles- of each gene within the whole popula-
tion [1]. As an example, a sample individual from the human population will have three pairs
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CD8 pMHC-I CDh4 pMHC-II
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Figure 1.2. MHC antigen presentation pathways. For MHC-I (left panel),
cytosolic antigens are digested by the Proteasome and transported to the Endoplas-
mic Reticulum (ER) through TAP. Inside the ER, MHC-I molecules are loaded with
peptides -forming the pMHC-I complex- and shipped to the cell membrane for pre-
sentation to CD8+ T cells. On the other hand, MHC-II molecules (right panel) bind
to peptides derived from the enzymatic digestion of engulfed extracellular antigens.
After binding, the pMHC-II complex is transported to the cell membrane for CD4+
T cell presentation.

of inherited Human Leukocyte Antigen Class I (HLA-I, or human MHC-I) alleles, most com-
monly spanning HLA-A, HLA-B, and HLA-C; similarly, the same individual will have up to
7 pairs of inherited Human Leukocyte Antigen Class IT (HLA-II, or human MHC-II) alleles,
most commonly spanning HLA-DRA, HLA-DRB1, HLA-DR3,4,5, HLA-DQA, HLA-DQB,
HLA-DPA, and HLA-DPB [30]. As a result, such individual will express up to 6 MHC-I
and up to 12 different MHC-IT allelic variants (HLA-DRA being monomorphic), depending
on the level of heterozygosity. The combinatorial space from which these 6- and 12-groups
are generated is extense: as of May 2021, a total of 12.995 HLA-I and 5.248 HLA-II pro-
tein sequences are available in the IPD-IMGT/HLA database [31]. This is, a total of more
than 18.000 known human MHC molecules, each one contributing to an unique and specific
peptide binding preference, and thus capable of scanning and selecting different subsets of
natural peptides for antigen presentation to T cells.

If we think of vertebrate immunity as an evolution race between hosts (which evolve
to defend) and invaders (which evolve to evade), it makes sense for this extreme MHC
variability to exist as a way of dealing with the huge space of potential antigenic peptides
nature has to offer [32]. As a result, any given MHC will respond to a “preferred” subspace
of the aforementioned space, and for a particular MHC-expressing cell, a specific combi-
nation of these subspaces will become its particular immune signature, which we will call
immunopeptidome.
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Figure 1.3. Structural representations of MHC-I and MHC-II proteins in
complex with peptides (in pink). (A) Structure of an MHC-I molecule, with a-
chain colored green and S2-microglobulin colored orange. (B) Structure of an MHC-
IT molecule, with a-chain colored green and B-chain colored orange. (C) Top view
of MHC-I binding groove, with anchored ligand shown in volumetric representation.
(D) Top view of MHC-II binding cleft, with bound peptide shown in volumetric
representation. All 3D representations were generated using Mol* Viewer [22].
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Figure 1.4. MHC binding motif visualization. In the left panel, the top
view of an MHC-I binding groove accomodating a peptide (in pink) is shown; anchor
residues are displayed in blue. Sequencing and aligning several ligands (middle panel)
can be exploited to extract a binding core. Then, the position-specific information
content from such core is used to generate a sequence logo (right panel) representing
the aminoacidic binding preferences of the corresponding MHC (in this example, the
human MHC-I HLA-B*39:01 is displayed). The MHC structural representation was
generated using Mol* Viewer [22]; the sequence logo was created using Seq2Logo [29].
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1.3 The Immunopeptidome

The set of all peptides presented by a cell via its MHC molecules is termed its immunopep-
tidome [33], and represents a unique fingerprint of the health of such cell. An immunopep-
tidome can be sampled by means of wet lab procedures that aim to identify peptides bound
to MHC. Historically, two main techniques have been developed to do this: in vitro Binding
Affinity (BA) assays and Eluted Ligands (EL) experiments, which quantify binding con-
stants of peptide-MHC complexes and a cell’s naturally presented peptides, respectively.

From a timeline perspective, BA assays were the first wetlab attempts to quantify MHC
binding preferences [34,35]. An example of these are binding competition experiments, in
which the concentration of a query peptide that leads to 50% inhibition of a reference bind-
ing peptide (IC50) is measured [36]. If a low concentration of the target peptide is needed
to displace the reference peptide, it means that the query peptide has great affinity for the
MHC molecule under scrutiny, and vice versa. The result of such experiments is a set of
quantitative binding affinities for different MHC-peptide combinations. However, a weak
spot of such assays is that query peptides must be synthesized a priori, which makes the
overall procedure costly, hard to scale and prone to selection bias. BA experiments also
ignore in vivo characteristics of the MHC antigen presentation pathway, whose steps are
related to selection and processing of relevant binding peptides.

As time passed, novel and more sophisticated approaches were developed in order to
acquire peptide-MHC binding data. In particular, Mass Spectrometry (MS) proteomics has
revolutionized biology with its ability to sequence and quantify proteins on the proteome
scale [37]. In a really broad sense, the idea of such proteomic pipelines is to first isolate
some protein sample one wants to characterize and then feed it to a mass spectrometer in
order to obtain its aminoacidic sequence. In recent years, technology has enabled better
isolation techniques for MHC-bound peptides for their posterior usage as input for mass
spectrometry [38], setting in motion the field of MS immunopeptidomics and facilitating the
high-throughput extraction of EL data from these kind of experiments [39].

As stated above, in the case of immunopeptidomics, the first step prior to applying any
MS technique is to prepare a target biological sample consisting of peptides that were pre-
viously bound to MHC [40] (refer to Figure 1.5 for a general overview). This is done by
first selecting a type of cell expressing the MHC variants of interest, usually by genotyping
the MHC of such cell. Then, the sample is cultured and mixed with detergent in order to
lyse its cells by rupturing their membranes. From this lysate, peptide-MHC complexes (pre-
viously bound to the lysed cellular membranes and also present inside such cells) become
isolated via immunoprecipitation using antibodies specific to the MHC class of interest.
Afterwards, peptide-MHC bounds are ruptured using acid (i.e. acetic), and peptides are
further separated from other remaining acid-digested MHC components ( -chains, -chains
and 2-microglobulins) by means of liquid chromatography. At this stage, the sample is
mostly composed of MHC binders, and thus is in place to be loaded onto a mass spectrom-
eter for sequencing [39].

A mass spectrometer is a device used to measure the mass to charge (m/z) of ions. In
a typical MS experiment, a solid, liquid or gaseous sample is ionized, for instance by bom-
barding it with a beam of electrons [41]. This may cause some of the sample’s molecules
to break up into positively charged fragments or simply become positively charged without
fragmentation. These positively ionized products are then separated according to their m/z
ratio, for instance, by accelerating them under a deflecting electric or magnetic field. Since
ions of the same m/z composition are (according to the Lorentz force [42]) deflected equally,
they will always hit the same spots on a collision sensor, enabling a reproducible detection
and characterization.

In a similar way, mass spectrometry of proteins requires that proteins in solution or solid
state be turned into an ionized gas form before they are accelerated, detected and charac-
terized. One of the most used methods for protein ionization is electrospray ionization [43]
(EST), where small and highly charged droplets (ions) are created from nebulizing a solution
containing proteins. This technique allows for these fragile molecules to be ionized without
fragmentation, and sometimes even preserves non-covalent interactions (this is why ESI is
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Figure 1.5. General overview of a Mass Spectrometry pipeline for Im-
munopeptidomics. In the top panel, the sample preparation step is shown. First, a
target cell culture expressing MHCs is lysed. Then, immunoprecipitation is applied
to separate peptide-MHC complexes from the rest of cellular debris. A digestion
step is afterwards ensued to recover only bound peptides, and these are fed to a Liq-
uid Chromatography-coupled tandem MS (bottom panel). After peptide-spectrum
matching, the associated list of MHC peptides for the cell line under study is finally
assembled.

often called soft ionization). Also, the requirement of having to work with a liquid protein
solution makes it ideal to be readily coupled to the last step of a sample’s preparation. To
help with this, mass spectrometers can be integrated with high-performance liquid chro-
matography (HPLC) columns [44], allowing for the analysis of complex peptide mixtures
by introducing peptides into the instrument at a controlled rate, ideally one at a time. So,
after HPLC-assisted electrospray ionization, generated droplets evaporate under Coulomb
fission [45] and resulting protonated peptides enter a first mass spectrometer, where an m/z
spectrum is recorded (MS spectrum). Then, peptide-ions of a particular m/z coming from
the first mass spectrometer are selected and fragmented into smaller ions (for instance, by
means of energetic collision with a gas). These fragment-ions are then injected into a sec-
ond mass spectrometer, which produces -thanks to the prior fragmentation- a more specific
m/z spectrum (MS/MS spectrum). This technique of using multiple mass spectrometers
connected in series is called tandem mass spectrometry, and is able to achieve specificities
and sensitivities equivalent to other competing methods while performing analyses in much
shorter times [46]. Finally, after the MS and MS/MS spectra are acquired, they become
stored for further processing.

Since peptide-ions fragments create patterns characteristic of a specific amino acid se-
quence [47], the peak pattern of the MS and MS/MS spectra provides information about the
peptide sequence. Considering this, sequencing can be directly done from the recorded spec-
tra by means of “de novo” peptide-spectrum matching [48], or by implementing a database
approach where measured spectra is compared against theoretical spectra of peptides we
expect to find in our sample [47]. For this latter approach, bioinformatic algorithms score a
query MS/MS spectrum against predicted fragmentation spectra of sequences from a target
database, returning a list of high-scoring amino acid sequences. While these algorithms are
very powerful, the problem is that there is substantial overlap between the scores for correct
and incorrect peptide hits [49]. So, a priori, one does not know which reported matches are
correct and which are wrong, and this limits the proper identification of true positives. To
manage this far from ideal situation, a False Discovery Rate (FDR) filtering is usually intro-
duced. First, a decoy database is constructed by reversing [50], shuffling [51] or constructing
random peptides [52] from the target database. Then, for a given MS/MS spectrum, the
reported matching scores distribution for the target database and the reported matching
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Figure 1.6. Comparison between three BA, EL SA and EL MA datasets.
For all data types, the first column corresponds to experimentally acquired peptide
sequences. The second column contains the restriction elements: for BA and EL
SA, such restrictions are HLA molecules; on the other hand, for EL. MA, specific
identifiers are present. It is common for such identifiers to be named after the
cultured cell line, whose expressed MHCs are known. Finally, the third column
contains the target value for the corresponding peptide-restriction pairs. Notice how
BA data have real-valued target values, whereas for EL SA and EL MA these are
boolean-valued.

scores for the decoy database (which will serve as a background distribution or null hypoth-
esis) are generated. Lastly, for a given score threshold, a simple FDR can be obtained by
counting the number of decoy matches (DM) above the threshold and the number of target
matches (TM) above the threshold and computing the ratio DM/TM. With this, one can
play with the score thresholding in order to increase or decrease FDR to a value that suits
the needs [49].

Independently of the approach used for peptide-spectrum matching, the final result of
an immunopeptidomics MS assay is a list of sequenced peptides that bind to the MHC
molecules expressed by the input cell culture. However, since the sample preparation step
decouples peptides from their associated MHCs, such output list will have a mixed MHC
specificity, and thus each peptide-MHC mapping will be multiple. The mixture complexity
will depend on the cell’s genotype and the target MHC class (in the context of human im-
mune system, cells are multi-allelic, and up to 6 MHCs can be expressed for class I and up to
12 MHCs for class II). We term this type of EL data Multi-Allele (MA) data. On the side,
genetically modified cell lines expressing a single MHC molecule (mono-allelic) circumvent
this problem [53]. Since such cell lines express only one MHC type, they generate what we
call EL data of the Single-Allele (SA) type, which has a much more simplified analysis, but
such data usually makes up only the minority of MS experimental setups. Finally, a crucial
characteristic of EL data (both SA and MA) in comparison to BA data is that it is not
affected by selection bias imposed by hypothesis-driven peptide selection, since by definition
every EL peptide is a natural MHC ligand. For a comparison between all these data types,
refer to Figure 1.6.

Sampling the immunopeptidome of a target cell is, for sure, a highly technical and
skilled endeavour. Moreover, the gigantic amount of data it generates is highly enriched
in valuable immunological information. Since this type of data essentially captures MHC
binding preferences towards specific peptide subsets, a question arises: could it be possible
to transfer such preferences to a computational model? This is, in essence, to construct an
algorithm capable of learning the rules that govern peptide-MHC interactions and render
them into some human-interpretable form. If so, such algorithm could be exploited to predict
the binding of new peptides towards a target MHC, and thus to infer a potential immune
response. Different approaches can be used to push forward the development of such a
model, but given the data-driven nature of our problem, employing Machine Learning is a
great starting point.
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Figure 1.7. Toy illustration of regression, clustering and classification
tasks. For regression, a set of points can be used to construct a function approxi-
mating such a set, in order to make new inferences (in this example, a linear model
is shown). In clustering, one can start from unlabeled information and exploit differ-
ent properties of the data space (i.e. distance metrics) to construct groups of similar
points. Finally, classification algorithms enable labeling of new data points (dot-
ted circumferences) according to some learnt classification function (i.e. closeness
criteria). Adapted from [65].

1.4 Machine Learning

Machine Learning is a subfield of Artificial Intelligence (AI) devoted to the research, devel-
opment and application of computer algorithms to find meaningful patterns in data. While
AT approaches may include operator-hardcoded rules, one of the main characteristics of ML
methods is that they improve automatically by means of “looking” at data, in a process
called learning [54]. This leads to an algorithm capable of discovering how to make predic-
tions or decisions without being explicitly programmed to do so.

The first published usage of the term Machine Learning dates from 1959 by Arthur
Samuel, a North American electrical engineer working at IBM. In his paper “Some Studies
in Machine Learning Using the Game of Checkers” [55], Samuel proposes an algorithm ca-
pable of accumulating experience by playing successive games of checkers against a human
opponent. Such algorithm is based on the construction of directed graphs, where nodes
encode checkerboard states and edges represent valid moves. A backwards graph traversing
strategy is used to decide the optimal play at a given game state, with this optimum de-
pending on certain weights that are updated move after move. Finally, and after 8-10 hours
of playing, Samuel’s algorithm outplayed him [55].

Besides the morbid fun of dominating its creators, Machine Learning algorithms serve
a whole list of meaningful purposes. Common tasks include: data regression, data classi-
fication and data clustering (Figure 1.7). Generally speaking, the solution to a regression
problem is a function able to map a given input space to a real-valued (or continuous)
output space; examples of regression algorithms are: linear regression [56], polynomial re-
gression [57] and logistic regression [58]. In a similar fashion, solutions to classification
problems are able to map input spaces to integer-valued (or categorical) output spaces;
some examples of classification algorithms are: perceptron [59], linear discriminant analy-
sis [60] and k-nearest neighbours [61]. Finally, clustering solutions are able to separate the
input space in regions such that elements in a given region (or cluster) are more similar
(according to some metric) to each other than those in other clusters; examples of clustering
algorithms are: k-means clustering [62], self-organizing maps [63] and DBSCAN [64]. It is
important to mention that the final “shape” of a mapping or clustering will depend on the
applied algorithm.

The above mentioned ML problems are usually solved under some type of learning
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paradigm. Up to date, the most developed ones are: supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning. Supervised learning refers
to the task of learning a function that maps an input to an output based on known input-
output pairs [66]; in other words, It makes possible to infer such function from labeled
training examples [67]. On the other hand, unsupervised learning enables learning patterns
from unlabeled training examples through some type of self-organization [68]. The third
category, semi-supervised learning, refers to the middle point between the first two, in the
sense it leverages using both labeled data and unlabeled data during training [69]. Regard-
ing reinforcement learning, it is the most youthful of the four paradigms, and has gained
a lot of attention in recent years mostly thanks to groundbreaking work [70-74] done by
OpenAl [75], DeepMind [76], and others. Essentially, it focus on the idea of learning by
interaction, and deals with how Al agents map situations to actions in a given environment
in order to maximize some type of reward function [77] (refer to this video [78] for a quick
and amazing demonstration of the capabilities of this paradigm).

If we now think about peptide-MHC interactions in ML terms, the task of predicting if a
given peptide binds to a target MHC can be a regression problem (if BA data is employed),
a binary classification problem (if EL data is employed), or hybrid (if using mixtures of BA
and EL data). Furthermore, given these types of immunopeptidomics datasets, the learning
process can be supervised (if we use BA and/or EL SA data), unsupervised (if we only use
EL MA data), or semi-supervised (if we mix BA and/or EL SA with EL MA data). Luckily,
all these requirements can be jointly addressed if Artificial Neural Networks are employed
as the training algorithm for peptide-MHC binding predictors.

1.5 Artificial Neural Networks

Introduction

Artificial Neural Networks are a ML algorithm loosely inspired by the wiring of biologi-
cal neural networks [59,79]. In essence, ANNs are weighted directed graphs composed of
nodes/neurons and vertices that perform computations and propagate such computations,
respectively, throughout the graph topology. A particular way of grouping and connect-
ing nodes together is referred to as network architecture. Several architectures have been
developed in the past [80], ranging in complexity and applications. One of the most sim-
ple and widely used network configurations is called Feed Forward Neural Network (FFNN).

FFNNs are acyclic directed weighted graphs whose neurons are grouped in layers con-
nected one after the other in a sequential fashion (refer to Figure 1.8 to see an example
architecture). Generally speaking, in FFNNs each neuron inside a layer is connected to
all the neurons inside the previous layer, and receives their outputs as input. Then, they
compute a weighted sum of such inputs from the previous layer and apply a nonlinear activa-
tion function to it. Activation functions enable ANNs to solve complex, nontrivial mapping
problems by means of bending their inner representations [81] (moreover, it has been proven
that a multi-layer FFNN with non polynomial activation functions can indeed approximate
any function [82]). Such activation functions come in different shapes and flavours, ranging
from a step function, sigmoid or ReLU, between others [83].

Specifically, for the graph shown in Figure 1.8, each node/neuron is connected to all
downstream neurons through weighted vertices. Neurons are grouped together into layers;
specifically, from left to right, an input layer, hidden layer and output layer. Two particular
units are shown in the bottom of the illustration, called bias neurons. To spread information
through the topology, an input vector Z of length M and componentes z, is fed to the
input layer. This layer propagates such vector to the hidden layer, where a neuron h with
associated weights w; , will compute the operation:

M
fE)=f (Z Wip Tyt bh) (1.1)
=0

where f represents an activation function. The output of such operation (for each hidden
neuron) is then passed onto the last layer. Here, the only available neuron o will repeat
the computation of Equation 1.1, but using the previous layer’s output as input, its weights
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Figure 1.8. Example architecture of a FFNN.

wy, , and bias b,. This last operation finally generates the output of the network for input
Z. As can be observed, ANNs with multiple neurons can become computationally taxing
pretty easily. Historically, this has always been a problem, and narrowed the applicability
scope of neural networks. However, in recent years, the acceleration of hardware capabili-
ties has overcome this, and led to the blooming of more complex ANNs capable of dealing
with higher order problems (thanks to denser graphs), popularly referred to as Deep Neural
Networks (DNN).

Deep Neural Networks are the object of study of Deep Learning (DL), a subfield of Ma-
chine Learning focused on the research and development of multi-layer ANN architectures
capable of learning representations of data with multiple levels of abstraction [84]. As an
example, a FFNN with two or more hidden layers can be considered a deep network. If
we, for instance, train such network for object detection in images, the learned features in
the first layer will typically represent the presence or absence of edges of particular angles,
a second layer will mostly detect arrangements of edges, a third layer may group such ar-
rangements into larger combinations that will correspond to parts of familiar objects, and
subsequent layers will detect objects as further combinations of these previous representa-
tions [85]. This compounding abstraction leads to strange, yet very interesting observations
such as the presence of specific floppy and pointy ear detectors in dog vs. cat image classifi-
cation models [86], and more recently the existence of in-silico multimodal neurons [87], first
described in neuroscience experiments by Quiroga et al. [88], which are capable of selectively
firing to specific individuals, landmarks or objects.

The abstraction power offered by deep learning has boosted the problem solving capabil-
ities of several fields. In recent years, DL approaches have beaten image recognition [89-92],
speech recognition [93-95], and protein folding [96, 97] prediction records, and have been
successfully applied at predicting the activity of potential drug molecules [98], analysing
particle accelerator data [99, 100], reconstructing mice brain circuits [101], segmenting cell
membranes in electron microscopy images [102], detecting mitosis in breast cancer histology
images [103], predicting protein contact maps [104], playing atari, go, chess [105] and Dota
2 [72], between others.

Many of the aforementioned milestones have been achieved using a particular DNN ar-
chitecture called Convolutional Neural Networks (CNN), which are a specialized kind of
feed-forward networks. One of the fundamental differences with FFNNs is that they can
learn local patterns through the use of convolutional filters over the input data [106]; also,
CNNs are able to operate upon variable-length inputs, while FFNNs are not. The con-
volution is a mathematical operation broadly used in signal processing, and is capable of
transforming certain target elements of an input signal and producing a desired filtered out-
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Figure 1.9. Example schematic of a CNN architecture. For simplicity, a
short input Z of only three components is fed to the input layer, which propagates
the information to the convolutional layer. In this example, a single two-weight con-
volution [wq,w,] is applied to a zero-padded input (this preserves dimensionality).
Neurons in the convolutional layer apply the transformation shown in Equation 1.1,
and pass the output to pooling neurons p. These units are in charge of performing
some downsampling operation, such as selecting the maximum value of their inputs.
As a result, the length of the convolutional output is reduced by one. Next, the out-
put of the pooling layer is fed to a FFNN through the weights w,, j, to produce the
final network output. In practice, CNNs tend to implement several convolution lay-
ers with variable quantity of weights and different types of convolutions. Note: the
biases of the convolution neurons are omitted from the drawing in order to simplify
it.

put [107]. In the context of CNNs, convolutions are applied by means of adaptive filters
of different sizes and strides, whose weights are adjusted through the training cycle of the
network. Upon convolving their input, convolutional layers transfer their output to the next
layer, which is usually a pooling layer that summarizes its input by computing, for example,
its maximum or average [108]. Afterwards, a concatenation of FFNN layers tends to be
used to produce the final output (refer to Figure 1.9 for an illustrative example). Two main
advantages of CNNs are that learned patterns are translation-invariant (this is, independent
of the position they occupy in the input sample) and, as with any other DL technique,
a sequential hierarchy of abstraction between such patterns can be established. Although
CNNs were originally designed to operate upon image and video inputs [89,92,109-112],
they have also been applied to biology-related data [113-119], proving their potential use
for sequence-based, biological pattern recognition challenges such as the one proposed in
this thesis.

Independently of the shallow- or deepness of the ANN architecture of choice, all neural
networks are composed of interconnected weights that resemble a graph topology. Such
weights represent the trainable parameters of these networks, and indicate how much influ-
ence each neuron’s output will have on downstream neurons. This means that for an ANN
to learn a correct input-output mapping representation, such weights need to be adjusted
to a specific value range. This is generally referred to as training or fitting the network, and
is done by means of applying some kind of optimization strategy.

Optimization Approaches

As mentioned above, a neural network must be trained in order to learn meaningful data
representations. In this context, training consists of making small, consecutive changes to the
network weights until the model correctly maps its inputs to its corresponding outputs. Such
changes do not happen randomly, but following an optimization criteria that quantifies the
mapping quality using some distance metric between the predicted and measured outputs.
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A valid approach is to implement a loss function L to measure the predictive error of the
model being trained; the overall shape of L will depend (among other things) on the type
of problem trying to be solved. For instance, in a supervised regression task, a common loss
metric is the Mean Squared Error (MSE) function:

N
L) = o > s~ 1(6,2,))° (12)

where N is the total samples in the training set, y, is the target (or measured) value of
sample x;, f represents the input-output mapping (in this case, an ANN) and 6 are the
trainable parameters of such mapping. Ideally, the goal is to find ,,, or the specific subset
of 6 that minimizes L globally.

Because of the large quantity of parameters in ANNs models, calculating such mini-
mization by means of an analytical (closed-form) solution, and in a sensible time, is just
not possible. For instance, the weight count of LeNet-5 [120] (a neural network initially
built for handwritten digit recognition) is 431.000 [121]; and this can be considered small,
since for other networks such as AlexNet [89] it is in the order of hundreds of millions [121].
This mesmerizing amount of trainable parameters means that a different approach needs
to be used in order to minimize L. If we think about it, choosing differentiable activation
functions (such as sigmoids) make f differentiable over 6, and thus L becomes differentiable
over 0 as well. This satisfies the necessary and sufficient condition for VL to always point
towards the direction of maximum growth of L from any given 6 [122]. Now, if following
VL from a given domain point would mean to “walk” towards a maximum error, walking
towards —V L would mean to walk away from this maximum error direction or, in other
words, walk towards the minimum error direction. This clever calculus strategy is exploited
by the algorithm of Gradient Descent (GD) [123], which has the following form:

o+l = 0t — . VL(6Y) (1.3)

where 0% represents the current state of the model (the “present values” of #) and 7 is a scalar
known as learning rate, which is used to modulate the contribution of VL to the weight
updating schema. Several flavours of GD are used in Machine Learning [124], all equally in
charge of exploring the hills and cliffs of a given loss function in order to minimize it (Figure
1.10). It is important to notice that, on an arbitrary neural network, L has no guarantees of
behaving as a convex function of 8 (weights can be positive or negative, there are nonlinear-
ities -activation functions-, etc.). Because of this, GD will most likely not converge to the
global minimum 6, of the error landscape, but a local minimum 6,,, instead. These local
minima are however usually sufficient to generate overall good predictors in many practical
problems [84]; moreover, avoiding 6,, may be beneficial, since it prevents over-training a
neural network.

So, in order to compute §**! in Equation 1.3, the gradient of Equation 1.2 at a given
iteration t needs to be calculated, such that:

N
VL) =~ D, 10", w) - V0, (14)

The hard task now is to calculate V f, since the complexity of f increases with the quantity
of network layers (from a calculus perspective, f represents an extensive series of function
compositions), and again this cannot be done analytically in a sensible time. To tackle this
issue, the Backpropagation (BP) algorithm was introduced in the early beginnings of neural
networks development [125,126]. BP works by computing the derivatives of f with respect to
each network weight using the chain rule, calculating intermediate gradientes in the function
composition one layer at a time, starting from the output layer and finishing in the input
layer. Backpropagation is a particular case of Automatic Differentiation (AD) [127], a set
of techniques to evaluate the derivative of any function specified by a computer program.
AD exploits the fact that computer programs can be represented as a graph whose nodes
represent elementary arithmetic operations (addition, subtraction, multiplication, division,
etc.) and elementary functions (exp, log, sin, cos, etc.). Then, by applying the chain rule
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Figure 1.10. Visualization of the gradient descent algorithm. Here, a
segment of the error landscape of a theoretical non-convex loss function L, depending
on model parameters (6,,65), is shown. The level curves of L are projected on
the parameters plane. Starting at the red dot, and depending on the heuristics of
execution, GD may converge to the leftmost well (solid red line), or the rightmost
well (dashed red line). Red dot’s final resting place will determine the local minimum
of L, and therefore the set of parameter values to be used.

repeatedly, derivatives of arbitrary order can be computed from the graph by calculating
node gradients. At the end of the day, BP makes the task of obtaining V f feasible, which in
turn enables heuristic minimization by GD and makes it possible to train a neural network.

Training

In general, neural networks are trained on data extracted from a training set in a pretty
straightforward way: a training instance is fed to the network, loss is calculated, graph
gradients are computed, BP is applied and weights become updated. This procedure is re-
peated until all input data becomes used, or, in other words, a training epoch is concluded.
Then, the cycle starts all over again, and usually ends when all the desired epochs finish
executing. After this, the model can be challenged to make predictions on some previously
unseen data to measure its ability to generalize, or to maximize its predictive performance
on such data. So, during the training phase, it is desirable to estimate -in some way- how
the generalization process is unfolding. A well documented way of doing this is to apply a
K-fold Cross-Validation (CV) schema. In general, CV is a model validation and selection
technique used for assessing how the results of training will generalize to a previously un-
seen, independent data set [128]. To do this, all N available training points are split into
K partitions of N, elements each. In general, IV, can be chosen at will for each partition,
but usually N, = N/K is used. Then, the learning algorithm (in our case an ANN) is
fitted on a training set composed of K — 1 partitions and its performance is evaluated on
a validation set consisting of the left out partition. Afterwards, this process is repeated K
times, cycling partitions until all partitions are used as validation set [129]. The process
results in K trained models, that can be used to estimate the power of the implemented
ANN architecture to predict unseen data and/or for model selection (i.e. by concatenating
the K validation folds predictions and calculating associated performances).

As mentioned above, one of the critical goals of cross-validation is to estimate the model’s
ability to generalize. If the network fails to do so, there is a risk of tightly fitting the training
data by learning small, specific and/or noisy statistical variations instead of a generalized
predictive rule [130]. This phenomenon is usually called overfitting and is really important
to keep it under control when training ANNS, since an overfitted network will lose any abil-
ity to work on new, real world data, becoming rather useless. One of the easiest ways to
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Figure 1.11. Example of an overfitting measurement in machine learning.
Here, the train set loss (blue) decreases monotonically, but starting at epoch 20 (ap-
proximately) the validation loss (orange) starts to increase. This particular example
is the result of training a FFNN with 500 hidden layer neurons on a toy dataset
composed of only 100 points of 2 features each, using a K = 2 cross validation. As
a result, it depicts how an over-complex network (for the dataset at hand) is able to
fit information to an extreme -and detrimental- detail.

address overfitting is to monitor the model training during cross validation [131]. To do this,
some prediction metric is extracted, epoch after epoch, for both the training set and the
validation set. Such a metric can be, for instance, the value of the loss function L (Equation
1.2). As epochs complete (and assuming our ANN architecture is sound) one would expect
for both training and validation losses to go down and then into a plateau. However, this
is usually not the case. As shown in Figure 1.11, beginning at some epoch, the validation
loss may start to go up, whereas the train loss may continue to decrease. This is a classic,
telltale sign of a model starting to lose its generalization capabilities, and applying some
kind of counter-strategy is key to avoiding it.

Several techniques exist to deal with overfitting, known collectively as regularization. In
the above scenario, an initial counter-strategy would be to apply early stopping, which con-
sists of just stopping the training when the validation metric gets continuously worse after a
predefined quantity of epochs (something commonly denoted as patience) [132]. Afterwards,
the model weights for the best epoch are generally saved as the output of the training. There
are several other regularization recipes available, such as L1 and L2 regularizations [133],
elasticnet regularization [134], data augmentation [135] and dropout layers [136], each one
with its strengths and weaknesses. As an example, dropout layers randomly set a fraction
of neurons in a given layer to zero during training, preventing units from co-adapting too
much to the data, and thus increasing overall generalization [137]. The fraction of neurons
dropped is commonly known as dropout rate, and represents what is called a network hy-
perparameter (HP).

HPs are a “special” kind of parameters, in the sense they do not get updated by the BP
algorithm during training iterations [138]. Activation functions, quantity of neurons and
layers, early stopping’s triggering epoch, and even the learning rate of eq. 2 are all forms of
hyperparameters. For a neural network to perform optimally, its hyperparameters need to
be fitted too, in a process called hyperparameter tuning or optimization. Pragmatically, this
means to select some target subset of HP configurations, extract their CV performances and
select the best performing configuration as the winner. In order to do this, different strate-
gies have been proposed to explore the usually gigantic hyperparameter space, from painful
manual tweaking to smarter algorithms such as grid search [139], random search [140], and
bayesian optimization [141], between others [142].

Independently of the chosen HP optimization criteria, a new concern surfaces in the con-
text of model validation. From what was shown above, K-folds Cross-validation is performed
to validate and select statistically sound models; however, optimal HPs are also selected dur-
ing cross validation (i.e. early stopping’s epoch). This would mean to use the validation set
for both fitting hyperparameters and reporting performance, resulting in a biased estimation
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(usually an overestimation) of the model’s true predictive power [143]. Because of this, an
“extended” version of CV is often employed when training neural networks, called Nested
Cross-validation. Different ways of approaching such nested CV exist, but commonly a first
chunk of N, data points (the test set) is separated from the N original instances, and then
the remaining N — N, points are partitioned following the classic CV schema. In this sce-
nario, the test set serves as a true independent evaluation for model selection, since it is not
used for fitting parameters nor hyperparameters.

Finally, independently of using vanilla CV or nested CV for generalization estimation
and/or model selection, a pristine left out dataset (never used during training whatsoever)
should be utilized to assess the true predictive power of our model, and to compare it against
competitors. In the case of peptide-MHC binding predictors, a commnly used type of left-
out data are epitopes (MHC ligands that elicit immune responses), since they share the
property of being binders (category used for training), but also represent real true positives
from the immune system’s perspective.

From all the exposed above, it can be observed that rigorous practices are crucial for
correctly training, validating and testing neural networks. From a ML pipeline perspective,
this is tightly bound to conducting proper measurements during the different phases of such
a pipeline (measuring train and validation loss to detect overfitting, assessing independent
predictive power for model selection, etc). In order to do this, different performance metrics
are used.

Performance Metrics

To quantitatively guide the development of neural networks, several performance metrics are
employed. Either to assess a model’s performance or compare it with competing algorithms,
the chosen metrics will depend on the type of problem being addressed. For instance,
regression models rely on some distance criteria between predicted values § and measured
values y, like the root mean squared error (RMSE) [144]:

1M
RMSE(y,y) = \j M Z@z —y;)? (1.5)

with M being the quantity of samples in the dataset that is going to be predicted. Also,
correlation measurements are broadly used. Assuming that § and y have a linear relationship,
one can use the Pearson Correlation Coefficient (PCC) [145]:

M

VX =S -

where variables with overlines represent the mean values of such variables. PCC lies in the
[-1,1] range, with -1 indicating perfect linear anticorrelation, 0 no linear correlation and 1
perfect linear correlation. This means the higher the PCC, the higher the correspondence
between predictions and measurements. On the other hand, quantification of non-linear
correlations between 3 and y can be achieved using the Spearman’s Correlation Coefficient
(SCC) [146], which is computed similarly to PCC but assuming a monotonic relationship
between predictions and measurements.

PCC(3,y (1.6)

On the other hand, classifiers use metrics related to their ability to predict the proper
measured classes. In particular, binary classifiers deal with the task of predicting two pos-
sible output classes, usually referred to as the positive class P and the negative class V.
This creates four possible outcomes: instances belonging to P can be correctly classified
as belonging to P (true positives, or T'P), or wrongly classified as belonging to N (false
negatives, or F'IN); on the other hand, elements of N can be correctly classified as belonging
to N (true negatives, or TN), or wrongly classified as belonging to P (false positives, or
FP). These four categories are often used to compute the Confusion Matrix (see Figure
1.12) of the classification task, which is a quick intuitive way of visualizing the classifier’s
performance.
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Figure 1.12. Confusion matrix showing the four categories of binary clas-
sification. Rows correspond to measurements, columns correspond to predictions.

Consequently, the entries of the confusion matrix can be used to derive many useful
performance criterions. In principle, one may want to measure the classifier’s ability to
correctly and wrongly assign a class label to its inputs. If we start with elements of P, we
could use the True Positive Rate (TPR) and False Negative Rate (FNR):

TP

TPR = ———— 1.
R TP+ FN (17)
FN
FNR = —— 1.
R TP+ FN (18)

TPR (also known as Sensitivity or Recall) measures the amount of correctly identified pos-
itive instances over all the positive population; on the other hand, FNR denotes the ratio
of wrongly identified positive instances over the positive population. In a similar fashion,
related metrics can be employed for elements of N, such as the True Negative Rate (TNR)
and False Positive Rate (FPR):

TN
TNR= ——— 1.
R=TN+rp (1.9)
FP
FPR = 7N FP (1.10)

TNR (also referred to as Specificity or Selectivity) is the ratio of all the correctly identified
negative instances over the negative population; on the side, FPR (also referred to as Fallout)
computes the ratio of wrongly identified negative instances over the negative population.
Since TPR + FNR = 1 and TNR + FPR = 1, it follows that TPR + FNR = TNR + FPR,
showing how binary classification is a literal interplay between being correct and being wrong
for both P and N. Other commonly used performance metrics are Accuracy (ACC) and
Positive Predictive Value (PPV):

TP+TN
ACC = 1.11
cc TP+TN+FP+FN ( )
TP
PPV =_—1—-— 1.12
v TP+ FP ( )

ACC computes the total number of correct classifications over the whole P + N population,
while PPV (which is also known as precision) evaluates the amount of correct positive
calls over the total positive calls (both correct and wrong). In particular, when dealing
with models trained to predict peptide-MHC binding, the F-Rank (abbreviated FRANK)
becomes a useful metric to quantify independent test set performances:

FRANK = % (1.13)
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Figure 1.13. Visualization of TP, FN, TN and F'P as a function of predic-
tion threshold t. Curves correspond to the probability density functions of classes
(P and N) as a function of prediction value. Prediction values above ¢ are classified
as positives, while values below as negatives (for this example, ¢ = 0.5). Overlapping
areas (in green and orange) correspond to misclassifications.

When evaluating the capacity of an MHC binding predictor, true measured epitopes are
conventionally employed. A pretty much standard testing set will consist of a unique pos-
itive instance (the epitope) and multiple negative instances. These negative instances are
obtained from the protein where such epitope was found, by means of extracting all the
possible sub-sequences of a certain length. With this, FRANK tells us the model’s ability
of identifying a singleton hit, in a way “emulating” how an MHC molecule would scan an
antigenic protein, and providing a useful measure of peptide prioritisation in the context
of epitope discovery. This metric outputs a score of 0 for a perfect predictor (epitope was
ranked first in the ordered prediction output) and a score of 0.5 for a random predictor.

Besides classification models that directly output class assignment probabilities (such
as naive Bayes [147]), certain regression models can be transformed into classification al-
gorithms. In particular, an ANN with a sigmoid activation function in its output layer is
an example of such a model. Basically, since output values fall in the range [0,1], they can
be interpreted as estimations of conditional probabilities over the input feature space. For
binary classifiers, after getting a prediction value p, one can use a threshold ¢ to assign a
class to a prediction, such that if p > ¢ it belongs to P, or to N otherwise (see Figure
1.13). A question then arises: what is a proper value of t? The short answer is that ¢t = 0.5
is usually employed, but nonetheless one could want to pick ¢ such that it optimizes the
classifier’s operation, according some criteria.

Moreover, implementing a metric that shows the overall performance of a classifier for
all possible threshold values (and not only the chosen one) is also pretty desirable. To do
so, the Receiver Operating Characteristic (ROC) curve is usually deployed. The ROC space
was originally introduced during World War II in order to calibrate the operating point of
radars (receivers); concluded the war, one of the first formal works on the topic was pub-
lished by Peterson et al. in the early 50s [148]. The ROC curve is defined as the plot of
TPR as a function of FPR parameterized for ¢ € [0, 1], and depicts how the probability of
detection is affected by the probability of false alarm for decreasing decision thresholds. The
curve always starts at (0,0) (¢t = 1) and finishes in (1,1) (¢ = 0), with the best shape being
a step function (ideal classifier), and the worst shape being an unitary slope rect (mean-
ing that using the classifier is the same as random guessing). Analogously, the Precision
Recall Curve (PRC) [149] is another useful way of measuring the predictive performance
of a classification model. It is constructed by plotting PPV as a function of TPR also for
t € [0,1], and illustrates the algorithm’s capacity of correctly retrieving positive instances
from both the true positive and predicted positive populations, for decreasing values of t.
Such curve always starts at (0,1) (¢ = 1) and finishes at (1, P/(P+ N)) (t = 0), with the
best shape being an x-mirrored step function and worst shape a horizontal line located at
PPV = P/(P+ N) (Figure 1.14). Finally, to crunch the ROC and PRC information into
a single meaningful number, an Area Under the Curve (AUC) [150] is usually computed
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Figure 1.14. ROC and PR curves. Left panel: ROC curve (orange), random
guess boundary (dashed blue line) and best possible classifier (dotted green lines);
the corresponding AUC is displayed in the bottom-right corner. Right panel: PR
curve (orange), random guess boundary (dashed blue line) and best possible classifier
(dotted green lines); the AUC for this curve is shown in the bottom-right corner as
well.

for both curves by means of integrating them. For ROC, an AUC of 0.5 means random
guessing, while for PRC a random classifier corresponds to an AUC of P/(P + N) (Figure
1.14). In some cases where certain FPR regions are not relevant and where the focus is
centered on a high specificity rather than sensitivity, the usage of a partial AUC may be
desirable. In this context, AUCO.1, defined as the integral of the ROC curve up to FPR =
0.1, has proven highly useful for comparing performance of epitope discovery pipelines

Besides all the aforementioned metrics being useful to assess an individual model’s perfor-
mance on independent data, statistics must be applied to prove that such model consistently
outperforms its competitors. For binary classification problems such as peptide-MHC pre-
diction, the binomial test is a good statistical test candidate. If, for example, we predict
tests sets using models M; and M,, we end up with vectors of associated metrics m,; and
My, each one of length 7. Then, the null hypothesis H,, will be that both models have the
same probability (0.5) of outperforming the other for each set, and by comparing m, and
M, element-wise we can accept or reject such Hy. This strategy will be thoroughly used in
the publications presented in this thesis.

Up to this point, we have firstly introduced the primordial necessity of peptide-MHC
binding to occur for the onset of immune responses. Then, a more in-depth examination of
MHC’s polymorphic nature revealed highly variant binding grooves, which in turn result in
a vast universe of binding motifs. Moving on, advances in current technologies have enabled
a heretofore unthinkable high-throughput sampling of immunopeptidomes, increasing the
overall quantity and quality of published binding data. Finally, the ever-growing availability
of such data has generated an increased necessity of interpreting and exploiting it, and for
this cause machine learning (in particular, artificial neural networks) can be readily deployed.
Finally, this complex connective tissue between immunology and algorithms represents the
leitmotif of this thesis, and it can be fully interpreted as a direct application of techniques
derived from the Immunological Bioinformatics domain.

1.6 Immunological Bioinformatics

Immunological Bioinformatics is a research field that applies computational techniques to
generate a systems-level view of the immune system. This may be achieved in a stepwise
fashion, where models are developed for the different components of the immune system,
and then combined in order to understand and develop therapies, vaccines, and diagnostic
tools for different diseases such as AIDS, malaria, and cancer. The long term goal of this
field is to establish an in silico immune system, with the ultimate capacity of predicting B-
and T-cell epitopes [151]. Then, and since the assembly of peptide-MHC complexes is a nec-
essary condition for T-cell activation, capturing the binding preferences of MHC molecules
is an obligatory step towards the ultimate goal of predicting T-cell epitopes.
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Essentially, capturing the receptor preferences of an MHC molecule can be done by
exploiting a set of peptide sequences that binds it. Naturally, the generated binding signals
will have a high correlation with the binding groove of the scrutinized MHC, and thus will
exhibit specific anchor positions and characteristic binding lengths. As shown earlier, MHC-
I binders tend to have binding cores of 8-10 amino acids long and their anchor positions are
often located at P2, P5/6 and P{; on the other hand, MHC-II usually binds peptides of
length 13-25, and anchor positions tend to be located at P1, P4, P6, and P9. A first approach
to quantify the enrichment of an amino acid at a position is to construct a Position Specific
Scoring Matrix (PSSM) [152] from binding peptide alignments, using the following formula:

M, ; = log, <f“’i> (1.14)
’ q

a

where f, ; is the frequency of amino acid a at position 4, and g, represents the frequency at
which amino acid a appears in nature (background frequency). Following Shannon’s infor-
mation axioms [153], a base 2 logarithm is then applied to the frequencies quotient in order
to extract the information content of amino acid a at position . PSSMs are the essence of
Sequence Logos, but can also be used as MHC binding likelihood estimators by position-wise
scoring the amino acids of a query peptide using the entries of M, ;. Approaches like this
are simple and require little amounts of data, but on the side they rely on linear assumptions
such that peptide binding can be represented as the sum of individual amino acid contri-
butions. Such assumptions narrow the applicability scope of these methods as predictors,
mainly because they are unable to capture higher order correlations that may be present in
binding data. Moreover, for MHC-binding, it has been shown that signals of higher order
exist in amino acids located between the anchor positions [154]. Because of this, neural net-
works have become a major step forward in seizing more detailed peptide-MHC binding rules.

In order to train neural networks using sequence data, some type of encoding needs to
be implemented. This means to transform peptides from the string space to a numerical
representation, so the network is able to use them for loss computation and backpropaga-
tion. A simple approach is to use one-hot encoding, where each amino acid is represented
as a vector of the alphabet length (20 in the case of proteins) that has a 1 in the position
corresponding to the amino acid’s alphabet position, and 0 elsewhere. It follows that for
one-hot encoding every vector is orthogonal to each other, meaning that all amino acids
are also assumed to be orthogonal. This, of course, is not what is observed in nature,
where different amino acid residues can have similar chemical properties and/or biological
conservation patterns. To capture these relationships, one could opt to use a Blocks Substi-
tution Matrix (BLOSUM) [155] encoding. Essentially, BLOSUM matrices are constructed
by extracting sequence alignments of conserved regions from protein families and calculating
similarity scores. This results in an encoding where amino acids of similar side-chain prop-
erties are represented with similar numerical values, and this helps improve peptide-MHC
predictions [154]. As a final note, it is important to mention that an additional letter may
be added to any encoding schema to identify the wildcard amino acid; usually, “X” is used,
and in most cases is just a vector of zeros.

To finally fit an ANN with biological sequencing data, one may fall in the temptation of
randomly splitting the data into K partitions, encode them and then perform a Cross Valida-
tion training. This, however, cannot always be done so straightforwardly. The problem with
biological sequencing data is that it tends to be highly redundant, in the sense that certain
sequences may overlap other sequences in the string space, directly leading to information
leakage during training. As an example, let’s assume a K = 2 split of the training data; so,
for any CV fold, we end up with a single partition for training, and a single partition for val-
idation. Imagine now that inside the training partition the sequence YPLKYNHQYLYDV
is present with a target value of 1 for a particular MHC; on the side, the validation partition
has the sequence HKVKYNHQYLYPL, with a target value 1 for the same MHC. Examining
carefully, one can see that both sequences share the common sub-sequence KYNHQYLY,
and this has huge implications. During the training loop, the network is going to be fitted
using the training sequence, and validated using the validation sequence. Since such overlap-
ping exists, CV performance is going to be overconfident, because the sub-sequence is used
to both update network weights and report validation metrics. Because of this, our network
will surely end up overfitted, becoming worthless when faced with the real task of predicting
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Figure 1.15. The NNAlign framework. In this example, MHC-I binding data
(top left), consisting of the peptides of Figure 1.4 and their associated affinity values,
is being fed to the algorithm. (1) An input sequence is selected and a sliding window
of length 9 (in green) is applied to it. (2) Windowed sub-sequences are fed to a
FFNN, resulting in different prediction values (for more details on this architecture,
refer to Figure 1.8). (3) The sub-sequence whose predicted affinity is closest to the
measured affinity (in bold) is annotated as a member of the final alignment core,
and its corresponding prediction value is used for backpropagation. (4) The next
input sequence is selected, and the process starts all over again. After completing all
training epochs, the resulting alignment core (in blue) will correspond to the binding
core of the MHC under study (in this example, the alignment motif for HLA-B*39:01
is displayed). Sequence logo was generated using Seq2Logo [29].

epitopes. To address this problem and regularize the network, train, validation and test data
must be thoroughly curated to limit their sequence similarities. This is done by applying the
Common Motif redundancy removal procedure [156], which is a customized version of the
Hobohm1 algorithm [157]. In Common Motif, sequences with overlapping sub-sequences of
length [ are clustered together in the same partitions, mitigating inter-partition overlapping
and enabling proper independent validation. As a result, the final output of the common
motif algorithm are K orthogonal partitions ready to be used as training input for cross
validation.

Apart from proper encoding and redundancy removal procedures, variable length pep-
tides need to be aligned in order to be used as training data for FFNNs. This occurs because
such network architecture has a fixed input size, and thus a fixed-size alignment core becomes
a fit candidate. However, this means that vanilla FFNNs will depend on a previous data
alignment step in order to be trained, imposing a major bias for representation learning. To
overcome this, a self-contained approach was introduced with the NNAlign [158] algorithm,
consisting of a neural network capable of aligning peptide sequences derived from BA assays
while simultaneously identifying MHC binding core motifs (Figure 1.15). NNAlign is essen-
tially a feed forward network that updates its weights by means of selecting the top scoring
sub-peptide within a target input peptide. In general, the training procedure consists in
picking a peptide, feeding all the sub-peptides of length [ (i.e. for MHC-I peptides, [ = 9 is
usually a good choice), selecting the top scoring sub-peptide and then applying backpropaga-
tion using the corresponding loss value. This is repeated for all peptides in the training set,
for all epochs. After training, the collection of all the selected sub-peptides will correspond
to a heuristic alignment core of the training data, enabling the posterior extraction of the
corresponding MHC binding motif. Later, a second version of NNAlign [159] introduced the
capability of applying insertions and deletions to the input peptides, critically expanding
the alignment space of the algorithm. Thanks to this, and besides improving general perfor-
mances, NNAlign-2.0 helped interpreting modes of binding for MHC-I [160] and identifying
non-canonical binding modes for MHC-IT [161].
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Figure 1.16. Example of RANK curves for three different HLA-I alleles.
In this zoomed-in region, the relationship between prediction scores and RANK
values can be easily observed, with an unique prediction score of 0.08 resulting in
three different RANK values (one for each allele). This type of score transformation
is crucial for pan-specific algorithms to work properly.

Besides creating peptide binding predictors for specific MHCs, NNAlign is also used
as the training engine for so-called pan-specific models. The major difference between an
allele-specific model and a pan-specific one is that the latter incorporates MHC information
into the training loop. In particular, such information encodes MHC sequences based on
polymorphic residues in close vicinity to the peptide in the binding groove (we term this
subsequence as pseudosequence). Two examples of pan-specific methods are NetMHCpan-
4.0 [162] and NetMHCIIpan-3.2 [163], which have been shown to successfully extrapolate
peptide binding prediction to MHCs with limited data coverage [164], enabling the potential
to predict binding to any MHC molecule of known sequence. An important take on pan-
specific methods is that, since different MHCs bind to peptides with different strengths, a
normalization schema is needed in order to correctly interpret prediction scores. Usually, a
ranking approach is employed, where predictions of random peptides against each available
MHC are ordered from high to low, and then relative positions are associated to predictive
outcomes. This results in the so-called RANK curves (see Figure 1.16), where the ranking
of a given peptide can be obtained using its associated predicted value. With this trans-
formation, prediction scores across different MHCs can be compared; also, on a side note,
the more intuitive percentual rank score, defined as %ZRANK = RANK * 100, is usually used.

As time passed and technology improved, ELL SA data became increasingly abundant,
and this pushed forward the development of new ways of incorporating such type of data in
combination with classic BA datasets. An essential contribution towards integrating these
data types was the two output neuron architecture introduced in Jurtz et al. [162]. As shown
in Figure 1.17, in this architecture BA and EL data get a dedicated output neuron each.
Then, during training, the network only backpropagates from the output neuron matching
the data type that was fed to the input. Since weights between the input and hidden layers
are shared between both data types, learned representations become shared across EL and
BA data as well, leveraging the best of both worlds.

As everything else in life, time and technology continued to move on, and EL. MA data
started to become abundant as well. However, since training a model on MHC peptide data
is inherently a supervised task, unambiguous MHC annotation of EL. MA data became a
major limitation. Because of this, prior deconvolution of immunopeptidomes was needed
in order to “convert” EL MA data into EL. SA. Such step relies on external unsupervised
clustering algorithms such as GibbsCluster [165,166], which is able to simultaneously align
and cluster an input peptide collection spanned from mixed MHC receptor specificities.
Each possible cluster is represented by a PSSM, and the method aims at maximizing the
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Figure 1.17. Two output neuron FFNN architecture. A color code is used
to represent BA data (yellow) and EL data (blue). Notice how the input and hidden
layers of the neural network share both data types, whereas the two output neurons
do not.

information content of individual matrices while minimizing the overlap between distinct
clusters following a Monte Carlo sampling approach. As a result, GibbsCluster reports the
optimal amount of clusters for the provided input and the corresponding alignment of each
cluster. Then, after peptide clustering, an intervention is needed to annotate each cluster to
an MHC restriction. Usually, annotation can be done with prediction models [167], or visual
inspection against known MHC binding motifs, but this often leads to biased and inaccurate
annotations. Also, the integrity of training data will rely on the accuracy of the clustering
algorithm, adding an extra limitation. After clustering, neural networks can be trained using
the NNAlign algorithm in order to generate predictive models for peptide-MHC binding. To
dig further into the approach of prior external deconvolution for posterior neural network
training, refer to the second chapter of this thesis.

To tackle the above mentioned limitations, further development of current algorithms
was needed. In particular, NNAlign was promoted to NNAlign MA, a new, pan-specific
version capable of single-handedly dealing with EL MA data deconvolution, training and an-
notation. To do this, such an algorithm exploits the co-occurrence of MHCs across datasets
together with the exclusion principle, under a semi-supervised learning schema. For a given
cell line, NNAlign_ MA annotates each one of its measured peptides to the top-scoring MHC
from the list of MHCs expressed by the cell line. It achieves this by (1) kick-starting the
network training using only BA + EL SA data for a short quantity of epochs, (2) annotat-
ing MA data by means of assigning each peptide to its top-scoring MHC prediction, thus
mapping MA data to the SA datatype, and (3) using this newly mapped data to perform
backpropagation over the network weights (Figure 1.18). MA data annotation is repeated
after every epoch, allowing the model to update peptide-MHC assignment beliefs on the
go. Also, the algorithm introduces a customized prediction rescaling technique, capable of
leveling out differences in data availability across MHCs, improving motif annotation. With
this training strategy, NNAlign MA is able to fully leverage immunopeptidomics data (up
to date consisting of BA, EL SA and EL MA datasets), expanding the learning capacities of
its previous version and improving identification of T-cell epitopes. To see a more in-depth
analysis on how NNAlign_ MA was designed, trained and validated, refer to the third chap-
ter of this thesis.

Given the pan-specific nature and improved performance of NNAlign  MA, new upgraded
versions of NetMHCpan and NetMHCIIpan were generated using such a framework. The
new NetMHCpan suite was trained on rather comprehensive data -spanning BA, EL. SA
and EL MA datasets-, and tested on independent ligands and epitopes, exhibiting an overall
increased predictive power. Finally, both NetMHCpan and NetMHCIIpan were uploaded
to the internet as web-servers of free access to the public. To read more about how these
upgrades were implemented and deployed, refer to the fourth chapter of this thesis.

Finally, after having completed the task of improving current MHC motif deconvolution,
annotation and peptide binding prediction methodologies, we ventured into the field of deep
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Figure 1.18. The NNAlign_ MA framework. In this example, toy SA (left-
most panel) and MA (rightmost panel) data are used to train the two-output FFNN
architecture from Figure 1.17 (middle panel). First, only the SA dataset (composed
of sequences, single MHC restrictions, and real- and boolean-valued target values)
is fed to the network for a short burn-in period lasting e; epochs (dashed orange
block and arrows). Usually, e, = 20 is used. During burn-in, unambiguous infor-
mation from single-restriction SA instances is imprinted into the network weights
as a means of “initial ground truth”. This is done following the NNAlign procedure
explained in Figure 1.15 (windowed sequences with target value y are fed, and clos-
est predicted value g is used for backpropagation and alignment core conformation),
with the aggregation of MHC information (NNAlign_ MA is a pan-specific method).
After burn-in concludes, the network is in place to start assigning single MHC re-
strictions to multiple-labeled MA dataset (consisting of sequences, cell line identifiers
and boolean target values). To do so, an “MHC list iterator” block is annexed in
between the neural network and the MA data. Such a block is in charge of cycling
and feeding, one by one, all MHCs expressed by the current peptide’s cell line. In
this way, not only a proper binding core is selected for the input peptide, but also
its best matching MHC allele. Afterwards, the corresponding predicted value is used
for backpropagation. The MA data training and annotation proccess is alternated
with SA data training, and repeated until all training epochs are concluded.

learning with a more exploratory spirit. Taking advantage of the astounding capabilities
of 1-dimensional convolutional neural networks, we defined a particular architecture that
enabled us to formulate mathematical “projections” of input data onto the network’s weight
space. This led to interesting results on how CNN topologies like the one proposed here con-
struct internal representations of MHC binding motifs, suggesting how such representations
could be extracted from the CNN with the purpose of learning the rules of MHC-peptide
interaction. To take a closer look on how this exploration was done, refer to the fifth chapter
of this thesis.



Chapter 2

A first approach to motif discovery in
immunopeptidomics data

2.1 Summary

This chapter presents the article “Computational Tools for the Identification and Interpre-
tation of Sequence Motifs in Immunopeptidomes”, in which a first generation approach is
introduced to characterize and exploit MHC binding motifs from immunopeptidomics data.

The aforementioned approach consists in the combined application of GibbsCluster-2.0
and NNAlign-2.0 (two publicly and freely available web-servers) to deconvolute experimentally-
acquired immunopeptidomes and train peptide-MHC binding predictors using such decon-
volution output, respectively. The datasets employed correspond to Mass Spectrometry
assays of HLA-T and HLA-IT ligands, where multi- and mono-allelic cell lines (respectively
expressing multiple and single HLA proteins) were utilized.

Due to their simplicity, HLA-I mono-allelic cell lines are first analyzed. For such data,
GibbsCluster is applied as a filter of spurious sequences, which we hypothesize are generated
during the experimental wet lab procedure. It follows the analysis of HLA-I EL. MA data,
where GibbsCluster is implemented as both deconvolution and filtering algorithm. Then,
HLA-II mono- and multi-allelic cells are filtered and clustered using the same approach fol-
lowed for HLA-I datasets. After deconvolution and assignment of HLA restrictions, peptide-
HLA binding prediction models are generated for both HLA-I and HLA-II. To do this, the
NNAlign neural network framework is used as a training algorithm.

Results show that GibbsCluster enables immunopeptidomics motif deconvolution and
NNAlign is able to effectively capture deconvoluted HLA’s binding preferences. Jointly,
these two algorithms serve scientists as a first-hand approach to identify motifs contained
in immunopeptidomes and train prediction models to conduct epitope discovery.

25
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Figure 2.1. Graphical abstract of chapter two. On the top left, a theoretical
cell line expressing three types of MHC-I (green, red and purple) is being character-
ized. After applying the corresponding MS/MS procedures, a collection of peptide
sequences with mixed MHC restrictions is assembled in order to feed the pipeline.
Notice how, prior to the deconvolution step, the sequence logo of such a collection is
just noise. GibbsCluster-2.0 is afterwards applied to the input, and the top scoring
clustering solution (tallest stack of vertical bars, corresponding to three groups) is
selected. Cluster logos are also reported, and their binding motif annotation is as-
signed externally, by means of visual inspection or prediction using external tools.
Afterwards, three peptide-MHC binding predictors are trained using the NNAlign-
2.0 software, each one modeling the preferences of the original MHCs expressed by
the cell line under study.
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Abstract

Recent advances in proteomics and mass-spectrometry have widely expanded the
detectable peptide repertoire presented by major histocompatibility complex (MHC)
molecules on the cell surface, collectively known as the immunopeptidome. Finely
characterizing the immunopeptidome brings about important basic insights into the
mechanisms of antigen presentation, but can also reveal promising targets for vaccine
development and cancer immunotherapy. This report describes a number of practical
and efficient approaches to analyze immunopeptidomics data, discussing the identifi-
cation of meaningful sequence motifs in various scenarios and considering current lim-
itations. Guidelines are provided for the filtering of false hits and contaminants, and
to address the problem of motif deconvolution in cell lines expressing multiple MHC
alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how
machine learning can be readily employed by non-expert users to generate accurate
prediction models directly from mass-spectrometry eluted ligand data sets.

Introduction

The comprehensive set of peptides presented on the cell surface by major histocompatibil-
ity complex (MHC) molecules, collectively referred to as the immunopeptidome, represents
a unique fingerprint of the health of a cell. T lymphocytes routinely scan this pool of
MHC-associated peptides, and can help eliminating infected or cancerous cells that present
abnormal peptides on their surface. MHC class I molecules mainly bind peptides derived
from intracellular pathogens (such as viruses and some bacteria) and present them to cyto-
toxic T lymphocytes; MHC class II epitopes are mainly derived from extracellular proteins
and arepresented to T-helper lymphocytes.

Recent technological advances in the field of mass spectrometry (MS) have brought
about a revolution in the study of immunopeptidomes (reviewed by Caron et al. [168]),
with several thousands of peptides that can be detected in a single experiment. Large
data sets of naturally presented peptides have been beneficial to define more accurately
the rules of peptide-MHC binding [162, 169, 170] and have also a tremendous potential in
defining pathogen-derived T-cell epitopes [171,172] and neo-epitopes unique to cancerous
cells [44,173-175]. Part of the appeal of MS-based approaches is that they do not require
prior knowledge of MHC motifs, and there is no human intervention in defining a library
of candidate sequences to be tested. Therefore, MS provides a large but relatively unbiased
sampling of the population of processed and presented peptides available for T-cell recogni-
tion. [170]

In most MS-based pipelines, spectra from eluted peptides are matched against a refer-
ence database of natural proteins using algorithms like MaxQuant [176] or PEAKS [48,177],
and filtered against a decoy database to limit the false discovery rate (FDR). Strict FDR
filters (typically in the order of 1%) should ensure that most spectra are correctly assigned
to bona fide ligands, but often leads to discarding a large portion of the spectra. Several
approaches have been proposed to increase the yield of spectral assignment. For exam-
ple, Mascot Percolator performs machine learning on high-confidence matches to rescore
database search results for lower-confidence peptides [178]. Instead of matching spectra
to an entire protein database, Spect MHC constructs reduced, targeted databases of po-
tential MHC ligands, effectively reducing the amount of spurious decoy hits. [179] Recent
work has also suggested that a portion of the unassigned spectra may also be explained by
proteasome-generated spliced peptides, which would require the inclusion of spliced variants
in the target database [180,181].

After spectral assignment to amino acid sequences, peptides must often be aligned and/or
clustered to extract meaningful sequence motifs of antigen presentation. The analysis pro-
tocols here will generally differ depending on the type of receptor (MHC I vs MHC class
IT) and type of sample used (cellular vs soluble MHC molecules and mono- vs poly-allelic
cell lines). On one hand, MHC I ligands have a limited range of lengths, typically 8-11
amino acids long, and are characterized by very conserved amino acid preferences at the
positions interacting with the MHC binding groove (anchor positions). On the other hand,
MHC 1II ligands are normally longer, with only a portion, the binding core, directly in-
teracting with the MHC groove [182]; in this case a more sophisticated alignment process
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is needed to extract conserved binding preferences. In transgenic cells expressing a single
MHC molecule (mono-allelic), only one specificity is expected to be present in the data and
motif identification is relatively straightforward. Conversely, unmodified cells will naturally
present peptides bound to multiple MHC alleles (up to six for HLA class I), with generally
different binding preferences; in this case, the multiple specificities contained in the data
must be deconvoluted, either by assigning MHC restriction with predictive methods, or by
unsupervised clustering.

A popular tool for the unsupervised identification of sequence motifs in immunopep-
tidomes is GibbsCluster [165, 166], a web-based and downloadable method that has been
included into numerous pipelines for the deconvolution of ligand motifs in the MHC class
1 [40,175,183,184] and MHC class IT [185-187] systems. The GibbsCluster algorithm takes
as input a list of peptide sequences (potentially of variable length), and uses a heuristic
search to group them into information-rich groups. Besides the sequence motif defining each
group, additional properties such as the ligand length distribution of each cluster can be
analyzed. A similar method, MixMHCp [169, 188], has shown performance comparable to
GibbsCluster, with the limitation that it can only handle peptides of uniform length. A
useful feature of GibbsCluster is the “trash cluster,” a check on internal motif consistency
that can filter out outliers that cannot be assigned to any clusters. In the context of MS
eluted ligand data, spurious data points can originate both from LC-MS/MS contaminants
and from erroneous spectral matches. As a noise filter, GibbsCluster can be beneficial also
for mono-allelic data sets where no motif deconvolution is required.

While sequence motifs are generated by GibbsCluster in an unsupervised manner, the
method cannot directly assign the MHC restriction of each ligand; this must be done by
comparing the unsupervised motifs with published binding motifs of the MHC molecules in
the sample. [189] While this comparative approach is in most cases feasible for human MHC,
whose most prevalent alleles have been well characterized and documented, it will fall short
for samples containing uncharacterized specificities. Aiming to overcome this limitation,
Bassani-Sternberg et al. [188] suggested a strategy for automatic, unbiased annotation of
MHC restriction by comparing motifs detected in multiple data sets with known haplotypes.
Exploiting the co-occurrence of MHC alleles across different data sets, they were able to as-
sign motifs to individual alleles without relying on a priori assumptions on their binding
specificity, also for alleles without previously documented ligands.

Over the past decades, many efforts have been dedicated to the development of compu-
tational methods for the prediction of peptide binding to MHC class I molecules. Most of
these T-cell epitope prediction methods have been traditionally trained solely on in vitro
data of peptide-MHC binding affinity. Although peptideMHC affinity is arguably the most
selective step in antigen presentation, other factors influence the likelihood of a peptide be-
ing presented on the cell surface for T-cell recognition [190,191]. In vitro binding affinity
data does not address the fact that antigen presentation is a complex, integrative physiolog-
ical process that combines antigen processing, transport and binding affinity /stability of the
peptide-MHC complex. Finally, in vitro data fails to reflect any peptide length preference
of different MHC-I alleles. Because naturally eluted ligands incorporate information about
these additional properties of antigen presentation, large MS-derived sets of peptides can
potentially enable the generation of more accurate prediction models. Recent studies have
suggested that models trained on MHC class I ligand data outperform binding affinity-based
predictors when it comes to identification of eluted ligands and T-cell epitopes, both in an
allele-specific setting [169, 170] as well as with pan-allelic coverage [162]. Generic tools for
machine learning from peptide sequences such as NNAlign [159,192] can be applied to in-
dividual MS data sets to generate custom-made prediction models, which can in turn be
employed for further downstream analyses of the immunopeptidome.

The rapidly expanding collection of naturally eluted ligands revealed by MS and the
analysis toolkits developed in its wake hold great promise in understanding the structure
of the immunopeptidome and the rules of antigen presentation. However, because of the
complexities inherent to MS eluted ligand data, it is not a trivial task to analyze and interpret
the information these data sets contain. In this report, we seek to address some common
issues and describe strategies to analyze MS ligand data and derive sequence motifs in the
various scenarios outlined above (MHCI vs MHCII; mono-allelic vs poly-allelic cell lines),
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Figure 2.2. Visualizing motifs and removing contaminants with Gibb-
sCluster. Sequence motifs of three representative alleles (A) before trash clus-
ter filtering and (B) after filtering. The post-filtering motifs have higher informa-
tion content and lack the putative K/R contamination at P9. C) Distribution of
NetMHCpan-3.0 percentile rank scores for peptides in the main cluster (red) and in
the trash cluster (blue).

with guidelines and examples on publicly available datasets.

MHC Class I, Mono-Allelic Cells

In a recent publication, Abelin et al. [170] described the development of transgenic cells
that express a single human MHC class T allele (HLA), and used them to generate a large
set of MHC ligands covering 16 HLA class I alleles. There are obvious advantages in using
mono-allelic cells to characterize MHC ligands: firstly, no deconvolution/clustering is re-
quired to define motifs at the single-allele resolution; secondly, the assignment of individual
peptides to their allele does not have to depend on binding predictions or prior knowledge
of the motifs. Apart from technical difficulties in the cell generation, a possible drawback is
that the relative level of expression of different MHC alleles in a given cell, and the amount
of ligands they present, is lost in a monoallelic setting. The amount of ligands presented
by different alleles may also depend on competition between MHC molecules, where the
newly available digested peptides from an unfolding antigen fragment would presumably be
captured by MHCs with the highest affinity [193].

Although most software for MS spectra mapping uses a strict false discovery rate (FDR)
threshold, incorrect ligands may still be present among the matches that pass the FDR
check. These may consist of common contaminants such as keratin or histone proteins, as
well as residual peptides from previous runs of the LC-MS/MS instruments used for sample
preparation [194,195]. GibbsCluster is a useful tool to detect and remove such contaminants
and false hits. For each allele in the Abelin data set [170], we applied GibbsCluster-2.0 with
default preset options for “MHC class I ligands of lengths 8-13,” specifying a single cluster.
Between 0.4 and 16% of the peptides (mean 4%) of lengths 813 were inconsistent with
the motif identified by GibbsCluster-2.0 and were removed by the program as noise. While
distinct motifs can be discerned before trash cluster filtering (see three representative alleles
in Figure 2.2-A), the post-filtering motifs have higher information content and more well-
defined anchor residues (Figure 2.2-B). Peptides in the “trash cluster” may sometimes hint
at the origin of the contamination: for example, the observation of terminal arginine/lysine
preferences at the C-terminus in several of the 16 alleles points towards tryptic peptides
polluting the mixtures (Supplementary Figure 2.S8). The ligands in the Abelin data set
have in general very good correspondence to known MHC binding preferences, with an av-
erage NetMHCpan-3.0 percentile rank [196] well below 1% for most alleles (Figure 2.2-C,
red boxplots). In contrast, peptides in the trash cluster match very poorly the preferences
of their MHC and are assigned high NetMHCpan rank scores (Figure 2.2-C, blue boxplots).
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MHC Class I, Poly-Allelic Cells

Unmodified antigen-presenting cells will generally express up to six different MHC class I
alleles (two each for HLA-A, HLA-B, and HLA-C). The immunopeptidome of these cells
therefore consists of multiple specificities mixed together, where the global haplotype is
known but the restriction of each individual ligand is unknown. For example, Bassani-
Sternberg et al. [40] described the LC-MS/MS analysis of peptides eluted from seven differ-
ent cancer cell lines and primary cells, which had been HLA-typed at high resolution, and
demonstrated how the GibbsCluster approach could be used to deconvolute the individual
peptide restrictions. Here we illustrate the application of GibbsCluster to one of the cell lines
from the Bassani-Sternberg study, HCC1143, which expresses the five alleles HLA-A*31:01,
HLAB*35:08, HLA-B*37:01, HLA-C*04:01, HLA-C*06:02.

GibbsCluster finds an optimal solution of four clusters, with a close correspondence to all
but one of the HC1143 alleles (Figure 2.3), failing to separate HLA-C*04:01 ligands. HLA-C
molecules have low expression levels and rather degenerate binding preferences, [188,197]
making the deconvolution of their motifs more challenging. The motifs determined by un-
supervised clustering show a remarkable correspondence with the binding preferences pre-
dicted by NetMHCpan-3.0 [196]. There are, in some instances, subtle differences between
the NetMHCpan and GibbsCluster motifs, as in the case of additional secondary anchors
(e.g., a positively charged P5 for HLA-B*37:01). This suggests that motifs directly derived
from eluted ligands may carry an additional level of information on peptide presentation (for
instance, secondary anchors conferring improved peptide-MHC complex stability) compared
to the NetMHCpan motifs, which were constructed from in vitro binding affinity data. The
sizes of the clusters give an indication of the relative level of expression of the different alle-
les, with the largest group corresponding to the homozygous HLA-A*31:01 (1253 peptides),
followed by the two HLA-B alleles (610 and 460 peptides, respectively) and by the lowly
expressed HLA-C*06:02 (409 peptides). Finally, 45 peptides were collected by the trash
cluster. Interestingly, for six out of seven cell lines in the Bassani-Sternberg data set, we
noted a C-terminal enrichment for arginine/lysine in peptide discarded in the trash cluster
(Supplementary Figure 2.59). A similar observation was made for the Abelin data set dis-
cussed previously, and hints that residual peptides derived from trypsin digestion may often
be present in the LC column.

As an alternative approach to unsupervised clustering, one can assign each peptide to a
MHC allele using peptide-MHC binding prediction methods; then deriving sequence motifs
from the resulting groups of peptides. We applied NetMHCpan [196] to the peptides eluted
from the HCC1143 cell line, assigning peptides to the MHC molecule in the haplotype with
the lowest predicted NetMHCpan percentile rank. If a peptide could not be assigned to any
MHC molecule with rank 2%, then it was discarded in a trash cluster. While this setup
mimics the GibbsCluster strategy, it has the very important difference that NetMHCpan
utilizes known motif preferences of the MHC molecules to make the assignments, whereas
GibbsCluster is unsupervised and requires no prior knowledge of the motifs. In the case
of the HCC1143 cell line, the MHC molecules are all well characterized and the solutions
found by the two approaches are remarkably similar (Supplementary Figure 2.510). As-
signment by NetMHCpan has the potential advantage that at least a fraction of peptides
could be assigned to HLA-C*04:01, a specificity that was not detected by unsupervised
clustering. However, in cases where the haplotype is not fully characterized, or when the
known MHC alleles have poorly studied motifs, the assignment by NetMHCpan would fail.
This is exemplified by a recent study of bovine MHC ligands [167], for which the motifs
derived by GibbsCluster differed dramatically from the assignments made by NetMHCpan
due to paucity of training data available to NetMHCpan for these alleles. Note also, that
the number of ligands discarded to the trash cluster using this approach was more than ten
times higher compared to those discarded by GibbsCluster (463 versus 45).

MHC Class II, Mono-Allelic Cells

Analyzing MHC class II binding data is for many reasons more complex compared to MHC
class I. First and foremost, the HLA class II binding groove is open at both ends, accom-
modating peptides of a wide range of length by letting them protrude at either terminus
of the nonamer binding core. Sophisticated alignment methods are therefore required to
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Figure 2.3. Clustering results for the HCC1143 cell line. The single cluster
solution (left) is a mixture of multiple specificities, dominated by the most abundant
alleles. The solution with highest information content corresponds to four clusters,
with motifs highlighted in the red box (center). The motifs identified by unsupervised
clustering show a remarkable correspondence with those predicted by NetMHCpan-
3.0 (right). The GibbsCluster method was run using the default preset parameters
for “MHC class I ligands of lengths 8-13,” except for the number of iterations which
was set to 100 (slower but more accurate), and number of groups, which was allowed
to vary between 1 and 6. NetMHCpan logos were obtained from the NetMHCpan-
3.0 website (http:/www.cbs.dtu.dk/services/NetMHCpan-3.0/logos.php) and were
constructed from the top 1% scoring peptides from a large set of natural random
peptides.

identify the conserved binding preferences of MHC class II molecules [161,198,199]. Sec-
ondly, the binding motifs for MHC class II are in general more degenerate compared to the
highly conserved MHC class I motifs [200,201]. These observations make the analysis and
interpretation of MHC class IT binding data, including MS ligands, highly challenging.

In a recent paper by Ooi et al. [202], MS eluted ligand data were used to investigate how
patients expressing different HLA class II alleles have different susceptibility to autoimmune
diseases. To characterize the specificity for each allele, they generated transgenic mice
bearing the human HLA-DR1 MHC class II allele. On these data, we illustrate how the
GibbsCluster method can be used to identify the binding motif of MHC class II molecules
from mono-allelic MS ligand data and at the same time remove potential outliers. The 5740
non-redundant raw eluted peptide sequences were uploaded to the GibbsCluster web server,
setting the recommended preset parameters for MHC class II peptides, except for the number
of iterations per sequence per temperature step (set to 100) and the number of temperature
steps (set to 50); these parameters entail a slower, but more accurate, motif search. The
method recovered the binding motif for allele HLA-DRB1*01:01, with strong amino acid
preferences at anchor residues at P1, P4, P6, and P9 (Figure 2.4-A). These preferences were
observed both without (Figure 2.4-A, left panel) or with a trash cluster activated (Figure 2.4~
A, right panel). By activating the trash cluster option with a threshold of 2, 179 peptides
(3% of data) were removed, and the logo showed a 20% increase in information content
(Figure 2.4-A, right panel).

MHC Class 11, Poly-Allelic Cells

Another data set obtained from the Ooi et al. study [202] consists of peptides eluted from
HWO09013 cells that express the HLA-DR15/DR51 class IT alleles. On this poly-allelic data
set of MS eluted ligands, we set out to demonstrate how the GibbsCluster can be used to
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Figure 2.4. Sequence motifs identified by GibbsCluster-2.0 on MHC class
IT ligand data. The method identifies distinct amino acid preferences at the anchor
positions P1, P4, P6, and P9 both without (left panels) and with (right panels) the
trash cluster activated. A) Visualizing the motif and removing outliers from the
mono-allelic human-DR1 mouse-transfected cell lines. B) Motif identification on
mixed allelic data of DR15-DR51-EBV transformed cell lines.

separate multiple specificities in MHC class II ligand data. The set of 2782 unique eluted
peptides was submitted to GibbsCluster, using the recommended preset parameters for MHC
class IT and allowing the program to search up to three clusters. The unfiltered, single-cluster
solution shows a motif with the correct P1, P4, P6, and P9 anchor positions, but with low in-
formation content and preferences that are a mixture of the two alleles in the sample (Figure
2.4-B, left panel). Activating the trash cluster with a threshold of 2, the maximum informa-
tion content is observed for the solution with two clusters (Figure 2.4-B, right panel). The
amino acid preferences identified by GibbsCluster resemble previously published motifs de-
rived from binding affinity data for HLA-DRB1*15:01 and HLA-DRB5*01:01 [192,203], and
closely overlap with the global peptidome of DR15/51 characterized in a recent study [204].
Specifically, cluster 1 was composed of 1610 peptides (57.9%) and its motif resembles the
HLA-DRI15 binding preferences; cluster 2 comprised 1050 peptides (37.7%) and corresponds
to the HLA-DR51 alleles; 122 peptides (4.4%) did not match to either group and were col-
lected by the trash cluster.

In order to validate the solutions generated by GibbsCluster, we examined the composi-
tion of the clusters in terms of binding potential predicted by NetMHCIIpan-3.1 [205]. Both
for the monoallelic DR1 and poly-allelic DR15/51 serotypes discussed above, we obtained
predicted percentile rank scores for all peptides in the cluster solutions and in their relative
trash cluster (Figure 2.5). The predicted median rank score for HLADRB1*01:01 in the DR1
cluster was 4% (first quartile (Q1) = 0.9, third quartile (Q3) = 12), whereas the trash cluster
had a median rank score of 41% (Q1 = 20.5, Q3 = 75). In the poly-allelic data, cluster 1
was associated with HLA-DRB1*15:01, and showed a median rank score of 13% (Q1 = 5,
Q3 = 30); cluster 2 was associated to HLA-DRB5*01:01 and obtained a median rank score
of 4% (Q1 = 1.1, Q3 = 11); peptides in the trash cluster were evaluated against both alleles,
assigning the best rank of the two, which resulted in an average rank score of 41% (Q1 =
23, Q3 = 75) (Figure 2.5). Overall, the Net MHCIIpan percentile score distributions suggest
that the trash cluster could successfully collect peptides with very poor correspondence to
the known preferences of the MHC class IT molecules, and that probably derived either from
incorrect spectral matches or from contaminants. The relatively high predicted rank values
for the peptides mapped to the HLA-DRB1*15:01 cluster further suggest that the binding
motif for this molecule predicted by Net MHCIIpan-3.1, which was trained on binding affinity
data, shared a rather weak overlap with the binding motif contained within the MS ligand
data. This observation underlines the high potential of MS ligand data to complement our
knowledge on peptide characteristics required for MHC antigen presentation, as previously
remarked for MHC class I [40,162,169,170, 184].
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Figure 2.5. NetMHCIIpan percentile rank score for GibbsCluster solu-
tions in the DR1 and DR15/51 data sets. Percentile rank scores were predicted
by netMHCIIpan-3.1 for each GibbsCluster group with matching alleles present in
MS data samples. In the case of the mixed allele dataset DR15/51, peptides in the
trash cluster were scored by NetMHCIIpan to both DRB1*15:01 and DRB5*01:01,
selecting the lowest rank score of the two.

Generating Prediction Models from MS Ligand Data

The approaches described so far in this report are mainly concerned with extracting and
visualizing meaningful patterns within complex, often noisy, mixtures of peptides sequences.
A further step is the generalization of the motifs identified in the data at hand, by construct-
ing prediction models. Machine learning algorithms such as NNAlign [159], when provided
with training examples suitably labeled (e.g., ligands vs non-ligands), can be instructed
to automatically learn the features that distinguish positive from negative examples. Such
models can then be applied on external data sets to discover more occurrences of the patterns
learned on the training data. In the context of peptideMHC interactions, a good prediction
model should have the ability to capture the binding preferences contained in the training
data, both in terms of sequence motifs and peptide length distribution. In the next two
sections, we illustrate some simple examples of prediction models directly constructed from
MHC class I and class II eluted ligands.

MHC Class I Prediction Model

As an example application, we continue with the Abelin ligand elution dataset previously
analyzed and filtered using GibbsCluster-2.0 (Figure 2.2). For each of the representative
alleles HLA-A*68:02, HLA-B*35:01, and HLA-B*57:01, we prepared a training set con-
sisting of post-filtering ligands (positive instances) and random natural peptides (negative
instances). Positive instances were labeled with a target value of 1, negatives with a target
value of 0. In line with earlier work [162], the amount of random negatives was imposed
to be the same for each length 8-13, and corresponded for each length to five times the
amount of positives for the most abundant peptide length. This uniform length distribution
of the random negatives was adopted as a background against which machine learning can
be employed to learn the amino acid and length preference of the natural binders.

On each of the three data sets, we trained a prediction model with the NNAlign-2.0 web
server, using the recommended preset options for MHC class I ligands of variable length.
In a crossvalidation experiment, the three models returned an area under the Receiver
Operating Characteristic curve (AUC) of 0.961, 0.984, and 0.979, respectively. In order to
derive the amino acid and peptide length preferences learned by the model, we used it to
evaluate a large set of 900 000 random natural peptides with a flat length distribution, and
extracted the top 0.1% scoring peptides. The composition of these high-scoring peptides
should reflect the main preferences identified by the method to distinguish positive from
negative instances. Indeed, the binding motif drawn from the top 0.1% peptides closely
reflects the amino acid preferences of the training data (Figure 2.6-A,B). Moreover, all three
methods could capture the preference for 9mer peptides over other peptide lengths; 10mers
were moderately allowed, 8mers and 11mers were observed more infrequently (Figure 2.6-C).
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Figure 2.6. Generating prediction models from MS ligand data. A) Se-
quence motifs of the training data for three MHC class I alleles, aligned and filtered
by GibbsCluster; B) sequence motifs captured by NNAlign-2.0; C) ligand length
preferences in the training MS data compared to length preferences learned by the
NNAlign model.

MHC Class II Prediction Model

To illustrate how the NNAlign framework can be used to construct MHC class II prediction
models, we go back to the DRI and DR15/51 data sets from Ooi et al. [202] previously
filtered and clustered with GibbsCluster (Figure 2.4). To enrich the positive instances with
artificial negative examples, a set of natural random negatives of lengths 11-19 amino acids
was added to each eluted ligands data set. Positive instances were labeled with a target value
of 1, negatives with a target value of 0. Similarly to the training set preparation described
above for MHC class I, the amount of random negatives for each length corresponded to
five times the amount of positives for the most abundant peptide length. For each of the
three specificities deconvoluted by GibbsCluster in the DR1 and DR15/51 cells, we applied
NNAIlign2.0 to generate a prediction model, using the preset parameters for MHC class 1T
recommended by the NNAlign server. For the mono-allelic DR1 serotype, all ligands except
those removed by the trash cluster were used to train a model. For the DR15/51 cells, for
which the clustering analysis revealed two separate specificities, we generated a separate
model from the ligands contained in each of the two clusters.

The three models revealed high internal consistency, with cross-validated performance
of AUC = 0.952, 0.974, and 0.952, respectively. NNAlign automatically generates a matrix
(and logo) representation of the motif learned by the method, constructed from the top
1% scoring predictions from a large set of random natural peptides. We may compare the
motifs learned by NNAlign to: i) the binding preferences in the MS training data, identified
by GibbsCluster, ii) the GibbsCluster motifs identified in tetramer-validated epitopes ex-
tracted from the IEDB for the three DR molecules, iii) the binding preferences predicted by
NetMHCIIpan-3.1 for these DR molecules. In general, the motifs learned by the NNAlign
models share a remarkable overall correspondence to the preferences found by GibbsCluster
for the MS ligand data, with similar amino acid enrichments at the anchor positions P1,
P4, and P6, as well as the strong P9 for the DR51-associated ligands (Figure 2.7, first and
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Figure 2.7. Comparison of motifs generated by different approaches for
three HLA-DR alleles. NNAlign-2.0 motifs were obtained by training artificial
neural networks on each MS data set, and evaluating 100 000 random peptides.
The top scoring 1% peptides were used to build logos. Raw MS data were aligned,
clustered, and filtered in an unsupervised manner using GibbsCluster, with a trash
cluster threshold = 2. The same procedure was applied to tetramer-positive data
downloaded from the IEDB. Note that due to small data set size, epitope logos
are shown in a different y-axis scale. Binding motifs for NetMHCIIpan-3.1 were
determined by evaluating 100 000 random peptides, and visualizing the core motif
of the top 1% scoring sequences.

second columns). Likewise, the binding motifs constructed from the rather small amount of
tetramer-validated epitopes obtained from the Immune Epitope Database (IEDB) [206] for
the three DR molecules (231 for HLA-DRB1*01:01, 129 for HLA-DRB1*15:01, 73 for HLA-
DRB5*01:01) correspond well with the motifs of the NNAlign models, and the MS ligand
data (Figure 2.7, third column). In contrast, the logos derived from in vitro binding affinity
data (NetMHCIIpan) in all cases show substantial differences to both the MS- and epitope-
derived motifs (Figure 2.7, fourth column). These discrepancies are most pronounced for
HLA-DRB1*15:01, where the NetMHCIIpan motif has weakly defined preferences at the
anchor residues, and an enrichment of arginine (R) throughout the binding motif: a pref-
erence that is completely absent from the MS and epitope-derived motif. Another, more
subtle difference is the enrichment of glutamic acid (E) at P4 in the MS and epitope mo-
tifs for HLADRB1*01:01; this preference is absent in the NetMHCIIpan motif. Finally,
NetMHCIIpan displays a preference for R/K at position P8 for HLA-DRB5*01:01; this
anchor is completely absent in the motif derived from MS and tetramer-validated epitope
data. Taken together, these results show that ligand elution is a stronger correlate of epitope
presentation than peptide-MHC binding affinity, suggesting that epitope prediction models
may greatly benefit from incorporating MS eluted ligand data.

Discussion

The binding specificities of MHC molecules have been traditionally characterized using in
vitro assays of binding affinity. The peptide-MHC binding data amassed through decades
of painstakingly low-throughput experiments have had a tremendous contribution to the
characterization of the binding preference for the most prevalent MHC molecules, and more
generally to the understanding of the peptide repertoire available for T-cell recognition.
However, because of the extreme polymorphism of the MHC-encoding genes, with up to
several thousand allelic variants per locus, the full characterization of their specificities
remains infeasible. Tandem mass spectrometry has emerged in the past decade as a pow-
erful, high-throughput alternative for the identification of peptides eluted on the surface of
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antigen-presenting cells.

The appeal of MS-based techniques does not only reside in the sheer amount of ligand
data that can be detected in a single experiment. Because MS ligands are derived from a
biological system that incorporates all properties of antigen presentation including binding
affinity, binding stability, proper peptide processing and translocation, and impact of MHC
binding chaperones, these techniques should capture additional signals besides the binding
affinity measurable by in vitro assays. Accurate tools for the identification of sequence motifs
in eluted ligand datasets are essential to interpret the patterns underlying the immunopep-
tidome and to benefit from this data deluge.

In this report, we described some straightforward, efficient approaches to extract motifs
from immunopeptidomes in a number of scenarios commonly encountered in the field. We
outlined analyses for MHC class I and class II, both in cell lines expressing a single MHC
allele and in unmodified cells with multiple MHC allelic variants. GibbsCluster [166] is our
tool of choice because it can effectively remove residual contaminants after FDR filtering,
deconvolute multiple motifs in a mixture of peptides of variable length, and because it works
both for MHC class I and class II ligands. In general, MHC class I molecules have strong,
welldefined motifs, and even in samples containing several specificities it is often feasible to
separate them into individual clusters. Unambiguously associating each cluster to individual
MHC molecules remains an unresolved problem, especially for alleles with unknown binding
motifs. So far only Bassani et al. [188] have attempted to tackle this question, exploiting the
co-occurrence of MHC class I alleles across different data sets of known haplotype to assign
motifs to individual alleles. More work along these lines is needed to automatically anno-
tate the MHC restriction of peptides in poly-allelic datasets. The current implementation
of GibbsCluster assumes that each peptide is restricted to one and only one MHC molecule.
When cells express different alleles with similar binding motifs, or in the case of MHC class
IT ligands binding to multiple alleles in different alignment frames, it is likely that an in-
dividual peptide can act as ligand for multiple MHCs in a mixture. Future improvements
to the algorithm should aim to address this limitation and account for potential multiple
restrictions of individual ligands.

Ultimately, prediction methods can only be as good as the data used to train them. While
MHC ligands sequences obtained by mass spectrometry show remarkable reproducibility and
produce binding motifs consistent with those derived with more low-throughput assays, there
remain several potential sources of error and bias in MS-based pipelines for ligand sequenc-
ing. For example, there is a documented underrepresentation of cysteine in MHC ligand
data sets, as this amino acid interferes with MS precursor fragmentation [170,188]. Differ-
ent software tools for spectrum-peptide mapping use different functions to score candidate
sequences, and they will generally identify nonidentical sets of ligands. Post-translational
modifications (PTMs) have also been shown to have a role in shaping the MHC ligand
repertoire [207]. However, accounting for such modified residues further complicates ac-
curate spectrum-peptide matching and PTMs are often not comprehensively considered
in MS pipelines. Finally, common contaminants such as keratin and histone proteins are
often co-eluted with MHC ligands and add a level of noise to the sequenced immunopep-
tidome [194, 195]. Reducing biases and sources of error in the data-generation pipelines
will also inevitably affect in a positive way the data interpretation and the prediction tools
constructed on these data.

A number of recent reports have described the first prediction methods trained on MHC
class I ligand elution data from mass spectrometry [162,170,189,208]. Their results indicate
that methods trained on naturally presented peptides largely outperform prediction methods
trained solely on in vitro binding affinity data when it comes to the identification of MHC
ligands and epitopes. No reports have yet been published on models directly trained on
MHC class II eluted ligands. Because the performance of MHC class II prediction methods
still lags far behind their class I counterparts for epitope prediction, antigen processing fac-
tors are likely to play a major role in the generation of MHC class II ligands. Incorporating
naturally processed ligand from MS experiments in the training pipelines of MHC class II
prediction methods is an exciting and yet unexplored opportunity to close that gap. A sim-
ple but powerful approach to generate prediction models from ligand data is the NNAlign
method [159]. We illustrated the construction of models from MS eluted ligands both for
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MHC class I and MHC class II, and showed that they capture the preferences of the training
data both in terms of binding motif and ligand length distribution. Taken together, these
computational tools allow researchers to interpret motifs contained in immunopeptidomes
and generate prediction models to scan protein databases for epitope candidates.
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Figure 2.S8.

Sequence motifs of peptides collected by the main cluster

and by the trash cluster for the 16 alleles in the Abelin data set.
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Figure 2.S9. Sequence motifs of peptides collected by the trash cluster
on the 7 alleles in the Bassani-Sternberg data set.
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Figure 2.510. Clustering of the HCC1143 cell line by GibbsCluster (left)
and NetMHCpan (right). Sequences were assigned by NetMHCpan to the allele
in the haplotype with the lowest predicted %Rank. If a peptide could be assigned to
any MHC allele with %Rank < 2%, then it was discarded to the trash cluster. Note
that, in this case, GibbsCluster could not deconvolute HLA-C*04:01 peptides.



Chapter 3

NNAlign_ MA: an improved motif
discovery algorithm for
immunopeptidomics data

3.1 Summary

This chapter introduces the article “NNAlign MA; MHC Peptidome Deconvolution for Ac-
curate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions”, in
which a second generation approach is presented in order to improve characterization and
exploitation of MHC binding motifs contained in immunopeptidomics data.

Such approach is an expansion of the NNAlign-2.0 software, termed NNAlign_ MA, which
introduces a custom training loop that enables shared usage of BA, EL SA and EL. MA data.
NNAlign_MA is capable of clustering peptides into individual MHC specificities and au-
tomatically annotate such clusters to an MHC molecule, while also training a pan-specific
prediction model covering all MHCs present in the training set. This new NNAlign version
represents a self-contained algorithm that overcomes the limitations of the GibbsCluster +
NNAlign combined strategy presented in the previous chapter. Moreover, since it expands
MHC allelic coverage of training data, identification of T-cell epitopes and natural ligands
becomes boosted.

NNAlign  MA was extensively tested on data from three antigen presentation systems
(HLA-I, HLA-IT and Bovine BoLA-I), outperforming prior versions and other competitors.
With this, we believe NNAlign_ MA offers a state-of-the-art, standalone solution to analyze
and exploit immunopeptidomes.

41
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Figure 3.1. Graphical abstract of chapter three. Here, the same theoretical
cell line present in the graphical abstract of chapter two (expressing green, red and
purple MHCs) is being analyzed. After acquisition through Mass Spectrometry, the
mixed EL. MA peptide list is fed to the NNAlign MA algorithm together with EL
SA and BA datasets. During training, and together with sequence alignment, a full
MHC deconvolution and annotation is performed upon the peptide input list. As
a result, peptide-MHC associations are unambiguously assigned, enabling accurate
predictions and reconstruction of the corresponding binding preference logos.
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Abstract

The set of peptides presented on a cell’s surface by MHC molecules is known as the
immunopeptidome. Current mass spectrometry technologies allow for identification of
large peptidomes, and studies have proven these data to be a rich source of information
for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are
usually poly-specific, containing multiple sequence motifs matching the MHC molecules
expressed in the system under investigation. Motif deconvolution -the process of as-
sociating each ligand to its presenting MHC molecule(s)- is therefore a critical and
challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe
NNAlign_ MA, a computational method designed to address this challenge and fully
benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign MA simul-
taneously performs the tasks of (1) clustering peptides into individual specificities;
(2) automatic annotation of each cluster to an MHC molecule; and (3) training of a
prediction model covering all MHCs present in the training set. NNAlign MA was
benchmarked on large and diverse data sets, covering class I and class II data. In all
cases, the method was demonstrated to outperform state-ofthe-art methods, effectively
expanding the coverage of alleles for which accurate predictions can be made, resulting
in improved identification of both eluted ligands and T-cell epitopes. Given its high
flexibility and ease of use, we expect NNAlign._ MA to serve as an effective tool to
increase our understanding of the rules of MHC antigen presentation and guide the
development of novel T-cell based therapeutics.

Introduction

Major Histocompatibility Complex (MHC) molecules play a central role in the cellular im-
mune system as cell-surface presenters of antigenic peptides to T-cell receptors (TCR).
Onpresentation, the peptide-MHC complex (pMHC) is scrutinized by T cells and an im-
mune response can be initiated if interactions between the pMHC and TCR are established.
The collection of peptides presented by MHC molecules is referred to as the immunopep-
tidome. Because of the extreme polymorphism of the MHC, immunopeptidomes can vary
dramatically within a population, contributing to the personalized attributes of the verte-
brate immune system.

Because of the essential role of the MHC in defining immune responses, large efforts have
been dedicated to understanding the rules that shape the immunopeptidome, as well as its
alterations in disease, either as a result of pathogen infection or cancerous mutation [209]. A
crucial step toward defining the immunopeptidome of an individual is the characterization of
the binding preferences of MHC molecules. The peptide-binding domain of MHC molecules
consists of a groove, with specific amino acid preferences at different positions. MHC class I,
by and large, loads peptides between eight and thirteen residues long [210,211]. MHC class
IT molecules have an open binding groove at both ends and can bind much longer peptides,
and even whole proteins [187,212].

Peptide-MHC binding affinity (BA) assays represented the first attempts of studying
binding preferences of different MHC molecules in vitro [34,35]. However, BA character-
ization ignores many in vivo antigen processing and presentation features, such as protein
internalization, protease digestion, peptide transport, peptide trimming, and the role of dif-
ferent chaperones involved in the folding of the pMHC complex [213]. Further, BA assays
most often are conducted one peptide at a time, thus becoming costly, time-consuming, and
lowthroughput. Recently, advances in liquid chromatography mass spectrometry (in short,
LC-MS/MS) technologies have opened a new chapter in immunopeptidomics. Several thou-
sands of MHCassociated eluted ligands (in short, EL) can with this technique be sequenced
in a single experiment [168] and numerous assessments have proven MS EL data to be a
rich source of information for both rational identification of T-cell epitopes [170,214] and
learning the rules of MHC antigen presentation [40,215].

In this context, we have demonstrated how a modeling framework that integrates both
BA and EL data achieves superior predictive performance for T-cell epitope discovery com-
pared with models trained on either of the two data types alone [162,215]. In these studies,
the modeling framework was an improved version of the NNAlign method [159], which in-
corporated two output neurons to enable training and prediction on both BA and EL data
types. In this setup, weight-sharing allows information to be transferred between the two
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data types resulting in a boost in predictive power. For MHC class I, we have demonstrated
how this framework can be extended to a pan-specific model, capturing the specific antigen
presentation rules for any MHC molecule with known protein sequence, including molecules
characterized by limited, or even no, binding data [162,167,216].

Except genetically engineered cells, all nucleated cells express multiple MHC-I alleles
and all antigen presenting cells additionally express multiple MHC-IT alleles on their sur-
face. The antibodies used to purify peptide-MHC complexes in MS EL experiments are
mostly pan- or locus-specific, and the data generated in an MS experiment are thus inher-
ently polyspecific - i.e. they contain ligands matching multiple binding motifs. For instance,
in the context of the human immune system, each cell can express up to six different MHC
class I molecules, and the immunopeptidome obtained using MS techniques will thus be a
mixture of all ligands presented by these MHCs [40]. The poly-specific nature of MS EL
libraries constitutes a challenge in terms of data analysis and interpretation, where, to learn
specific MHC rules for antigen presentation, one must first associate each ligand to its pre-
senting MHC molecule(s) within the haplotype of the cell line.

Several approaches have been suggested to address this task, including experimental se-
tups that employ cell lines expressing only one specific MHC molecule [170,217-219], and
approaches inferring MHC associations using prior knowledge of MHC specificities [179] or
by means of unsupervised sequence clustering [169]. For instance, GibbsCluster [165, 166]
has been successfully employed in multiple studies to extract binding motifs from EL data
sets of several species, both for MHC class I and MHC class II [175,184,185,187]. A sim-
ilar tool, MixMHCp [169] has been applied to the deconvolution of MHC class I EL data
with performance comparable to GibbsCluster. However, neither of these methods can fully
deconvolute the complete number of MHC specificities present in each data set, especially
for cell lines containing overlapping binding motifs and/or lowly expressed molecules (as in
the case of HLA-C). Moreover, for both methods the association of each of the clustered
solutions to a specific HLA molecule must be guided by prior knowledge of the MHC binding
motifs, for instance by recurring to MHC-peptide binding predictions [167]. Therefore, both
methods require some degree of manual intervention for deconvolution and allele annotation.

A recently published method was suggested to overcome this limitation. The compu-
tational framework by Bassani-Sternberg et al. [188] employs MixMHCp [169] to generate
peptide clusters and binding motifs for a panel of poly-specificity MS data sets, and next
links each cluster to an HLA molecule based on allele co-occurrence and exclusion principles.
Although this approach constitutes a substantial step forward for aiding the interpretation
of MS EL data, it has some substantial shortcomings. First and foremost, the success of the
method is tied to the ability of MixMHCp to identify all the binding motifs in a given MS
data set, an ability that is challenged in particular for cell lines containing MHC alleles with
similar binding motifs, and for molecules characterized by low expression levels [169, 220].
Secondly, successful HLA labeling of the obtained clusters is limited by allele co-occurrences
and exclusions across multiple cell line data sets. Although one may argue that this short-
coming is destined to wane as more immunopeptidomics data sets are accumulated in public
databases, there currently remain multiple cases when co-occurrence and exclusion princi-
ples fail to completely deconvolute peptidome specificities [188].

Inspired by the framework outlined by Bassani-Sternberg et al. [188] and by the earlier
success of the pan-specific NNAlign framework for modeling peptide-MHC binding [162],
we here present a novel machine learning algorithm resolving these shortcomings, enabling
a fully automated clustering and labeling of MS EL data. The algorithm is an extension
of the NNAlign neural network framework [158,159,192], and is capable of taking a mixed
training set composed of single-allele (SA) data (peptides assigned to single MHCs) and
multi-allele (MA) data (peptides with multiple options for MHCs assignments) as input and
deconvolute the individual MHC restriction of all MA peptides while learning the binding
specificities of all the MHCs present in the training set. Compared with earlier approaches
for peptidome deconvolution, annotation, and prediction model training (e.g. GibbsCluster
NNAlign [220] and MixMHCp MixMHCpred [188]), NNAlign MA performs these three
tasks simultaneously, by iteratively updating the clustering, MHC annotation and peptide
binding predictions in an integrated framework. NNAlign  MA does not require manual
curation to assign the correct number of clusters, nor for the annotation of clusters to their
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respective MHC molecule. NNAlign MA is available at: www.cbs.dtu.dk/suppl/immunology/
NNAlign MA/NNAlign MA_testsuite.tar.gz.

Materials and Methods
Peptide Data

Several types of MHC peptide data for human (HLA) and bovine (BoLA) class I, and HLA
class IT were gathered to train the predictive models presented in this work. Peptide data
was classified as single allele data (SA, where each peptide is associated to a single MHC
restriction) and multi allele data (MA, where each peptide has multiple options for MHC
restriction). MA data are generated from MS MHC ligand elution assays where most often
a pan-specific antibody is applied for class I and either a pan-specific class II or a pan-DR
specific antibody is applied for class IT in the immuno-precipitation step leading to data sets
with poly-specificities matching the MHC molecules expressed in the cell line under study.
SA data were obtained from binding affinity assays, or from mass spectrometry experiments
performed using genetically engineered cell lines that artificially express one single allele.

HLA class I: SA data -both binding affinity (BA), and MS MHC eluted ligands (EL)-
was extracted from Jurtz et al. [162]. The MA data was collected from eight different
sources [40,175,184,188,221-224]. Both data sets were filtered to include only peptides of
length 8-14 amino acids. Additional information concerning the HLA class I MA data can
be found in Supplementary Table 3.53 and information concerning the SA BA and EL data
sets in Supplementary Table 3.54.

HLA class II: BA data was extracted from the NetMHCIIpan-3.2 publication [163]. As
for EL data, the Immune Epitope Database [225] (IEDB) was queried to identify publica-
tions with a large number of allele annotated EL data, both SA and MA [185,202,226-233].
Ligands were extracted from these publications, excluding any ligands with post transla-
tional modifications. Both BA and EL data was length filtered to include only peptides
of length 13-21. Details on the composition of the HLA class I MA data are shown in
Supplementary Table 3.S5.

BoLA: SA data was extracted from Nielsen et al. [167] and the MA data was collected
either from the same publication (data for the MHC homozygous cell lines expressing the
haplotypes A10, A14, A18) or were generated for this study (data for the cell lines expressing
the haplotypes A11/A11, A19/A19, A20/A20, A15/A15, and A12/ A15). All data sets were
filtered to include only peptides of length 8-14. A summary of the BoLA MA data is given
in Supplementary Table 3.S6.

BoLA EL Data Generated for This Study

BoLA Cell Lines and BoLA-I-Associated Peptide Purification
Associated Peptide Purification were performed according to the procedures described in [167].

LC-MS2 Analysis

Samples were suspended in 20 pl of loading buffer (1% acetonitrile, 0.1% TFA in water) and ana-
lyzed on an Ultimate 3000 nano UPLC system online coupled to a Fusion Lumos mass spectrometer
(Thermo Scientific). Peptides were separated on a 75 ym x 50 cm PepMap C18 column using a 1h
linear gradient from 5 to 25% buffer B in buffer A at a flow rate of 250 nL/min (600 bar). Peptides
were introduced into the mass spectrometer using a nano Easy Spray source (Thermo Scientific)
at 2000V and ion transfer tube temperature of 305 °C. Subsequent isolation and higher energy
C-trap dissociation (HCD) was induced on the most abundant ions per full MS scan at 2 s cycle
time. Tons with a charge of 2-4 were measured at an accumulation time of 120 ms, AGC target of
200,000, quadrupole isolation width of 1.2 Da, and energy level 28. All fragmented precursor ions
were actively excluded from repeated selection for 60 s.

MS Data Analysis

MS data was searched against a database comprising the 23/12/2017 download Uniprot entries for
organism bos bovis (32,207 entries) concatenated with 4,084 Theileria muguga protein sequences
annotated from RNAseq data of the schizont stage of T. parva (GenBank, BioSample accession
SAMNO03981746) plus a single entry for beta-galactosidase of E. coli. 36,692 entries were searched
simultaneously in Peaks v8.5. No specificity was set for enzymatic digestion and no modifications
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SA (BA) SA (EL) MA (EL)
Pos Neg # MHCs Pos Negs # MHCs Pos Neg #MHCs
HLA-I 50,344 127,169 104 46,183 740,939 51 225,751 5,399,788 67
BoLA-I 50,361 150,833 7 84,717 1,644,976 - 92,339 1,788,293 16
HLA-II 55,178 76,185 59 32,51 337,72 8 15,494 152,445 16

Table 3.1. Training data overview. For each MHC system (first column), the
number of positive and negative instances is shown for each type of training data.
SA: Single Allele; MA: Multi Allele; BA: Binding Affinity; EL: Eluted Ligands.

of amino acids allowed. Mass tolerance for precursor ions was 5 ppm, whereas fragment mass tol-
erance was set to 0.03 Da. Score threshold was set corresponding to a false discovery rate of 1.0%
as determined by simultaneous decoy database searches integrated in the Peaks 8.5 software. The
full list of MS identified peptides generated for this work can be found in Supplementary Table 3.510.

In Vitro Binding Data

Recombinnt BoLA-1*00901 and human beta-2 microglobulins (52m) were produced as previously
described [234]. In brief, biotinylated BoLA-1*00901 was generated in Escherichia coli, harvested
as inclusion bodies, extracted into Tris-buffered 8 M urea and purified using ion exchange, hy-
drophobic, and gel filtration chromatographies. MHC-I heavy chain proteins were never exposed
to reducing conditions, which allows for purification of highly active pre-oxidized BoLA molecules,
which folds efficiently when diluted into an appropriate reaction buffer. The pre-oxidized, denatured
proteins were stored at -20 °C in Tris-buffered 8 M urea. Human /52m was expressed and purified
as previously described [235].

Nonameric peptide binding motifs were determined for BoLA1*00901, using PSCPL as previ-
ously described [197,234,236]. Recombinant, biotinylated BoLA heavy chain molecules in 8 M urea
were diluted at least 100-fold into PBS buffer containing 125I-labeled human $2m and peptide to
initiate pMHC-I complex formation. The final concentration of BoLLA was between 10 and 100 nM,
depending on the specific activity of the heavy chain. The reactions were carried out in the wells of
streptavidin-coated scintillation 384-well FlashPlate® PLUS microplates (Perkin Elmer, Waltham,
MA). Recombinant radiolabeled human 2m and saturating concentrations (10 pM) of peptide
were allowed to reach steady state by overnight incubation at 18 °C. After overnight incubation,
excess unlabeled bovine 2m was added to a final concentration of 1 uM and the temperature was
raised to 37 °C to initiate dissociation. pMHC-I dissociation was monitored for 24 h by consecutive
measurement of the scintillation microplate on a scintillation TopCount NXT multiplate counter
(Perkin Elmer, Waltham, MA). PSCPL dissociation data were analyzed as described [222]. Briefly,
following background correction, the area under the dissociation curve (AUC) was calculated for
each sublibrary by summing the counts from 0 to 24 h. The relative contribution of each residue in
each position (i.e. the relative binding, RB) was calculated as RB = (AUC__sublibrary/AUC_X9).
The RB values were next normalized to sum to one for each peptide position and used as input to
Seq2Logo to generate the in vitro BoLA-1*¥*00901 binding-motif.

Training Data

Three training sets were constructed, one for each of the systems under study (Table 3.1). To
ensure an unbiased performance evaluation on the MA data, duplicated entries between the SA EL
and MA data were first removed from the SA EL data set for each training set. Next, random
peptides were extracted from the UniProt database and used as negative instances for the EL data
in each case. Here, an equal amount of random negatives was used for each length, consisting of
five times the amount of peptides for the most abundant length in the given positive EL data set
as described earlier [167,215]. This enrichment with random natural negative peptides was done
for each individual SA and MA EL data set. The amount of positive and negative peptides in each
training set is shown in Table 3.1.

Evaluation Data

For HLA class I, an independent evaluation data set of HLA restricted CD8+ epitopes was obtained
from Jurtz et al. [162]. After removal of epitopes overlapping with the HLA-I training data, the
final evaluation data consisted of 558 HLA-epitope entries. For the evaluation with MixMHCpred,
MHCFlurry, and MHCFlurry_EL (the version of MHCFLurry trained including EL data), the
epitope data set was further filtered to only include epitopes restricted to HLA molecules covered
by all method. This resulted in a data set of 541 epitopes. Because MixMHCpred cannot make
predictions for peptides containing X, all such peptides were removed from the benchmark before
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evaluation.

For BoLA-I, a set of BoLA restricted epitopes were obtained from Nielsen et al. [167]. For
HLA-I and BoLA-I evaluation, the source protein sequence of each epitope was in-silico digested
into overlapping 8-14mers, and the performance reported as the Frank score, i.e. proportion of
peptides with a prediction score higher than that of the epitope [162]. Using this measure, a value
of 0 corresponds to a perfect prediction (the known epitope is identified with the highest predicted
binding value among all peptides found within the source protein) and a value of 0.5 to random
prediction

For HLA class IT all CD4+ epitopes measured by Intracellular Cytokine Staining(ICS) assay were
downloaded from the IEDB. The set was filtered to include only positive epitopes with four letter
resolution HLA typing. Further, epitopes overlapping with the HLA-II training data (100% identity)
were removed. As for HLA-I, the Frank score was used to validate the model performance, here in-
silico digesting the source protein into overlapping of a length equal to that of the epitope. Finally,
to exclude potential noise, epitopes were discarded if none of the prediction methods included in
the benchmark could identify the epitope with a Frank value of 0.2 or less. This resulted in a set
of 221 HLA-II epitopes for evaluation.

NNAlign_ M A Modeling and Training Hyperparameters

Models for peptide-MHC binding prediction were trained with hyperparameters and model architec-
tures similar to those described earlier [159,215,220] for prediction of peptide-MHC binding based
on the data sets described in Table 3.1. Positive instances in EL data sets (for both SA and MA)
were labeled with a target value of 1, and negatives with a target value of 0. To avoid performance
overestimation and model overfitting, training sets were split into 5 partitions for cross-validation
purposes using the common motif algorithm [156] with a motif length of 8 amino acids for class
I (corresponding to the shortest binding mode for class I peptides) and 9 amino acids for class II
(corresponding to the size of the class II binding core) as described earlier [162,215].

A single and simple yet highly critical step sets the updated NNAlign  MA method proposed
here aside from its ancestors. To be able to accurately handle and annotate MA data, NNAlign_ MA
imposes a burn-in period where the method is trained only on SA data. After the burn-in period,
each data point in the MA data set is annotated by predicting binding to all possible MHC molecules
defined in the MA data set and assigning the restriction from the highest prediction value (see the
Prediction score rescaling section for variations on this). After this annotation step, the SA and
MA data are merged respecting the data partitioning to further train the algorithm. This MA
annotation step is repeated in each training cycle.

In the case of HLA-I and BoLA-I, models were trained on the full set of SA and MA data as
an ensemble of 50 individual networks, generated from 5 different seeds; 56 and 66 hidden neurons;
and 5 partitions for cross-validation. Models were trained for 200 iterations (using early stopping),
with a burn-in period of 20 iterations. For performance comparison, a SA-only model was trained
for HLA-I using the same architecture and hyper-parameters by excluding all MA data from the
cross-validation partitions, thus including only data for SA while respecting the training data struc-
ture.

Regarding HLA-II, default settings for MHC-II prediction as previously described [215,220] were
used. Models were trained and evaluated on 5-fold cross validation partitions defined by common
motif clustering with a motif of length 9. The final ensemble of models consists of 250 networks
(2, 10, 20, 40 and 60 hidden neurons and 10 random weight initiation seeds for each CV fold).
Networks were trained for 400 iterations, without early stopping and using a burn-in period of 20.

All networks have an input layer, a single hidden layer and an output layer with two output
values (one for binding affinity and one for eluted ligand likelihood). Networks were trained using
back-propagation with stochastic gradient descent and a fixed learning rate of 0.05. When making
predictions using the network ensembles, the average over the individual network predictions was
used.

Prediction Score Rescaling

To level out differences in the prediction scores between MHC alleles imposed by the differences in
number of positive training examples and distance to the training data included in the SA data set,
a rescaling of the raw prediction values was implemented and applied in the MA data annotation.
The rescaling was implemented as a z-score transformation of the raw prediction values using the
relation z = (p—p)/o, where p is the raw prediction value of the peptide to a given MHC molecules,
and p and o are the mean and standard deviation of the distribution of prediction values for random
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natural peptides for the MHC molecule. Here, the score distribution was estimated by predicting
binding of 10,000 random natural 9mer peptides to MHC molecule in question. Next, the mean and
standard deviation were estimated from a positive normal distribution, iteratively excluding outliers
(z-score < -3 or z-score > 3). For an example on how z-score is applied to transform prediction
score distributions, see Supplementary Figure 3.514. This estimation of p and ¢ was repeated in
each iteration round before annotating the MA data. As the rescaling is imposed to level out score
differences between MHC molecules characterized in the SA training binding data and molecules
from the MA data distant to the training data, the need for rescaling should be leveled out as
the MA data are included in the training and the NNAlign_ MA training progresses. To achieve
this, the values of p and o were modified to converge toward uniform values p,, and o, defined as
the average of p and o over all molecules in the MA data set. This convergence was defined as
p=w-p+(1—w)-p, and 0’ = w-o+ (1 —w)-o0,, where w = 1/(1+ e*=7)/10) and z is the
number of training iterations. With this relation, when w is close to 1 after pre-training (z = 20),
the terms p,, and o, vanish; on the other hand, as x passes 100 iterations, w converges to 0 and the
terms p and o will vanish. With this, one can modulate the rescaling of the data as a function of the
iterations and the type of data being used for training (SA or MA). The shift value of the exponen-
tial present in w (75) is a tunable parameter that defines this adjustment schedule. Similar results as
the ones shown in this work were obtained varying this value in the range 50 —100 (data not shown).

Distance Between Pairs of MHC Molecules

The distance between MHC molecules was calculated as described earlier [164] from the sequence
similarity between the pseudo sequences of the two molecules. Likewise, was the distance of an
MHC molecule to the data used to train a given prediction model, defined as the closest distance
to any MHC molecule included in the training data.

Pruning the HLA Supertype Tree - HLA Models with Removed Specificities

To quantify how MA data can boost the performance of a peptide-MHC predictor, we constructed
additional models, where SA data associated with HLA molecules from the A2 and A3 supertypes
where exclude from the training data. In short, this was achieved by first identifying the alleles in
the MA data for the two supertypes [237], resulting in the following allele list: HLA-A*02:01, HLA-
A*02:05, HLA-A*02:06, HLA-A*02:20, HLA-A*68:02, HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*31:01, and HLA-A*68:01. Next, all data for alleles with a distance (see above) of less than
0.2 to any of the alleles in this list were removed from the SA data. Finally, a SA model was trained
as described above on the remaining SA data, and MA model on the remaining SA data combined
with the complete MA data, respecting the original data partitioning.

Sequence Motif Construction

Sequence binding motif were visualized as Kullback-Leibler logo plots using Seg2Logo [29]. Amino
acids are grouped by negatively charged (red), positively charged (blue), polar (green) or hydropho-
bic (black). If not otherwise specified, binding motifs were generated from the top 0.1% of 200,000
random natural peptides (9mers for class I and 15mers for class 1) as described earlier [162].

Binding Motifs Similarity Comparison

The similarity between two HLA binding motifs was estimated in terms of the Pearson’s correlation
coefficient (PCC) between the two vectors of 9*20 elements (9 positions and 20 amino acid propen-
sity scores at each position).

Model Performance Evaluation

For model comparison, the AUC (Area Under the ROC Curve) and AUC 0.1 (Area Under the ROC
Curve integrated up to a False Positive Rate of 10%) performance measures were used. For a given
model, each test set was predicted using the model trained during cross-validation. Next, all test
sets were concatenated, and an AUC/AUCO0.1 value was calculated for each MHC molecule/cell
line identifier. In case of multi-allele data, the prediction score to each peptide was assigned as the
maximal prediction value over the set of possible MHC molecules.

To evaluate the “cleanness” of a given cluster/motif identified by NNAlign_ MA, positive-
predictive values (PPV) were calculated. For each cell line, we calculated the number of ligands
N predicted to be bound to each allele from the concatenated test set predictions. Next, the PPV
for each motif was calculated as the fraction of peptides in the top N*0.95 predictions that were
actual ligands. The values of 95% was selected to tolerate a certain proportion of noise in the EL
data [220].

Results

A key issue associated with the interpretation and analysis of LC-MS MHC eluted ligand data sets
(EL data) stems from the challenge of deconvoluting and linking each ligand back to the presenting
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MHC molecule(s) of the investigated cell lines. In the following, we describe the NNAlign MA
framework resolving this challenge, and showcase how the framework can be applied to effectively
integrate MA EL data in a semi-supervised manner into machine-learning models for improved
prediction of MHC antigen presentation and T-cell epitopes on the three large data sets of human
(class I and class II) and cattle MHC class I ligand and T-cell epitope data.

The NNAlign_ MA Algorithm

The NNAlign MA algorithm is an extension of the NNAlign neural network framework, and is ca-
pable of taking a mixed training set composed of singleallele data (SA, peptides assigned to single
MHCs) and multiallele data (MA, peptides that are assigned to multiple MHCs), and fully decon-
volute the individual MHC restriction of all MA peptides, learning the binding specificities of the
MHCs present in the training set. In short, the NNAlign framework underlying NetMHCpan-4.0
method, is an artificial neural network method integrating SA binding affinity and EL data with
sequence information of the MHC molecules, allowing information to the leveraged both between
data types and MHC data sets, resulting in pan-specific predictive power [162].

The MA extension of NNAlign consists of various critical steps (see Figure 3.2 for a schematic
overview). First, a neural network is pre-trained on SA data only during a burn-in period, using the
NNAlign framework. This results in a panspecific model with potential to infer binding specificities
also for MHC molecules not included in the SA data set [162,164]. After this initial training period
(from now on referred to as “pre-training”), the data in the MA data sets are annotated. That
is, binding for each positive peptide in the MA data set is predicted (using the ligand likelihood
prediction value from the pre-trained model) to all the possible MHC molecules of the given cell
line and the restriction is inferred from the highest prediction value (for details see Materials and
Methods). For negative MA data, a random MHC molecule from the given cell line is tagged.
Next, the SA and now single-MHC annotated MA data are merged, and the model is retrained on
the combined data. Note, that the MHC allele annotation is updated at each iteration and will
in general change as the training progresses. Implicitly, the algorithm exploits the principles of
co-occurrence and exclusions outlined by BassaniSternberg et al. [188] : i.e. sequence motifs that
consistently occur across multiple cell lines sharing only specific MHC alleles are assigned to the
shared MHC(s) by the iterative annotation step. For an illustration of this effect refer for instance
to HLA-B*13:02, the only allele in common between the two cell lines CM467 and pat-NS2. The
binding motif for this molecule (and the other HLA molecules in each cell line) as obtained by
NNAlign MA are shown in Supplementary Figure 3.S9. Here, it is apparent that only one motif
is shared by these two cell lines, and the co-occurrence principle allows NNAlign  MA to assign
this motif to HLA-B*13:02. In ambiguous cases where co-occurrence and exclusion principles are
insufficient, the pan-specific nature of the method will help tilt the annotation toward the correct
MHC. An example of this is showcased by the motif of BoLLA-1:00901 in Figure 3.2. BoLLA-1:00901
is only present in the MA data, and hence are data for this molecule only presented to the model
after the pre-training. Because no MHC molecule in the SA data share a strong preference for H
at P9, H at P9 is absent in the predicted motif for BoLLA-1:00901 after pre-training. After pre-
training, the data from the two cell lines (A12/A15 and A15/A15) expressing BoLA-1:00901 are
presented to the model, hence for the first-time showing peptides with a H at P9. NNAlign_ MA is
now faced with the challenge of assigning these peptides to one or more of the alleles expressed in
the two cell lines. The method does this in two ways, by within each cell line predicting for each
peptide binding to all expressed alleles and selecting the most favorable as the potential restriction
element, and by transferring knowledge of binding preferences for the different alleles imposed by
ligands in other cell line data sets. Analyzing the binding of peptides using the pre-training model,
BoLA-1:00901 (in contrast to BoLA-4:02401 and BoLA-2:02501) is found to tolerate H at P9 (the H
is not present in the motif because this motif only displays amino acid enrichments). Further, both
BoLLA-4:02401 and BoLA-2:02501 are expressed in a third cell line (A14), but none of the motifs
identified here share a preference for H at P9 (see Supplementary Figure 3.512). Taken together,
these properties enable the model to assign peptides with H at P9 to BoLA-1:00901. For details on
model hyper-parameters and model training setup, see Materials and Methods.

HLA-I Benchmark

To benchmark NNAlign MA, we trained a model on the complete set of SA data described in the
NetMHCpan-4.0 paper, combined with an extensive set of MA data covering 50 different cell lines
with typed HLA allotypes described in Bassani-Sternberg et al. [188]. Note that, before training,
we removed all overlapping peptides between the SA and MA data from the SA data set. This was
done to fully demonstrate the power of the NNAlign_ MA to annotate MA data also in situations
where the information cannot simply be transferred from the SA data. After training, each MA data
point ends up being annotated to a single MHC molecule, and from this annotation the distribution
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Figure 3.2. Full NNAlign_ MA framework. Initially, a model is pre-trained
using SA data only (“NNAlign 2.0 Training” box); next, MA data are annotated and
merged with the SA data (“NNAlign 2.0 MA Annotation” box), generating newly
annotated MA data; then, the training is repeated iteratively using such new data.
The NNAlign_ MA algorithm encompasses all the steps indicated in the flow chart.
It is important to notice that, for alleles that are part of one or more MA data sets, a
prediction score rescaling is applied in every epoch (iteration) after the pre-training,
as a part of the MA annotation step. In the upper left part are displayed examples
of binding motifs of two MHC molecules just after pre-training (i = 20). In the lower
part of the figure are shown the changes to predicted binding motifs of the same
two MHC molecules as NNAlign MA iterates over the data. Here “i” refers to the
number of iterations.
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Figure 3.3. Sequence clustering and labeling comparison between
NNAlign_ MA, MixMHCp and NetMHCpan-4.0 for the HCC1143 and
HCT116 cell lines. Motifs corresponding to NNAlign_ MA were constructed based
on ligands from the given MA data set (cell line) predicted using cross-validation to
be restricted by the given HLA molecule; the quantity of peptides associated to
each HLA molecule is given on top of the corresponding logos; allele annotation was
performed automatically by NNAlign  MA. MixMHCp motifs were constructed by
running the algorithm on the ligands associated to each cell line; allele annotation
was obtained from [188]. SA EL data motifs were derived from single-allele (SA)
data available from the IEDB [225]

of ligands associated with each HLA molecules was recovered. Based on the predicted 9mer binding
cores of the ligands, logos for all the HLA alleles expressed by each of the cell lines under study
was constructed (Supplementary Figure 3.S9). In this benchmark, NNAlign MA was capable of
not only clustering the EL data into a set of groups matching the number of expressed HLA alleles
in each cell line (this is guaranteed by the construction of the method), but also to assign each
group to a single corresponding HLA allele. As a point of comparison, on the same benchmark
data, MixMHCp was only capable of achieving a complete deconvolution of all HLA specificities in
26% of the 50 cell line data sets (failing to identify motif corresponding to HLA-C alleles in 61% of
the cases), and could not annotate at least one cluster in 16% of the samples. Two examples of this
are given in Figure 3.3, showing the NNAlign MA deconvolution of the two cell lines HCC1143
and HCT116. In the first case, MixMHCp correctly identified 5 motifs, but could not assign two of
the five to their corresponding allele (respectively HLA-A*31:01 and HLA-B*37:01). For HCT116,
MixMHCp was able to deconvolute and assign only four of the six expressed alleles, missing the
deconvolution of the motifs for two HLA-C alleles, HLA-C*05:01 and HLA-C*07:01. The accuracy
of the 4 motifs additionally identified by NNAlign MA was confirmed by reference to SA data
available from IEDB [225] (see Figure 3.3).

As stated above, the NNAlign_ MA method by construction is guaranteed to cluster the MA
data into several groups matching the number of HLA alleles expressed in each cell line. The asso-
ciation of each cluster to the correct HLA molecule, and the accuracy of each cluster are, however,
not guaranteed. By investigating the deconvolution solutions for the different cell lines (Supple-
mentary Figure 3.59), it is apparent that the accuracy of the motifs identified by NNAlign  MA (as
expected) depends on the number of ligands assigned to a given HLA, and that complete charac-
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terization of the HLA’s in a given cell line, for a few cases, is impeded by this fact (a few examples
include the motif for HLA-C*07:04 from Fibroblast, HLA-C*08:01 from Mel-624, and HLA-C*02:10
from RPMI8226). These are further examples of alleles only present in single MA data sets, lim-
iting the ability of NNAlign MA to transfer information of the binding motifs from other data sets.

To further quantify the accuracy of the cluster-HLA association, we compared the motifs ob-
tained by NNAlign MA to the motifs obtained from SA data in situations where such data were
available from the IEDB (Supplementary Figure 3.S10). Here, we in the vast majority of cases
observed an excellent agreement, with an average correlation between the two motifs of 0.883 over
the 46 alleles included (p value for the correlation being random was in each case p < 0.001, exact
permutation test, for details on how the correlation was calculated refer to Materials and Meth-
ods. Note, that this correlation was equally high for alleles characterized by SA EL training data
and alleles not characterized by SA EL data (average PCCs of 0.883 and 0.876, respectively). As
expected, the agreement between the MA and SA motifs also here was highest for the cases where
both motifs were characterized by large data sets.

Next, we compared the motifs of individual HLA alleles obtained across different cell lines,
for example the HLAC*03:03 allele, shared between 5 cell lines. Using again a simple correlation
analysis, we quantified the similarity of these different motifs, and could in all cases confirm a high
consistency, with an overall averaged correlation of 0.901 over the 17 alleles shared by 5 of more
cell lines (Supplementary Figure 3.511). These correlation values were all significantly different
from random (p < 0.0001, exact permutation test), and significantly higher than the correlations
obtained by comparing motifs assigned to different HLA molecules (p < 107°), t test). Also, the
correlations were lowest for the comparison between motifs characterized by small data sets (as ex-
emplified by the motifs for HLA-C*07:02 from the HCC1937 and Mel-8 cell lines, each characterized
by 48 and 31 ligand data points respectively (see Supplementary Figure 3.59), resulting in a corre-
lation between the two motifs of 0.68). Finally, we evaluated the “cleanness” of each cluster/motif
by calculating predicted positive (PPV) values. Here, all clustering solutions were found to have
very high accuracy, with an average PPV value of 75% (for details on the calculation of the PPV
refer to Materials and Methods, and for the complete list of PPV values refer to Supplementary
Table 3.57.

Taken together, these results demonstrate the high performance of NNAlign MA | achieving in
most cases an accurate, consistent and complete (including for HLA-C) deconvolution of MA EL
data sets.

Given these encouraging results, we next conducted a fullscale performance evaluation for pre-
diction of eluted HLA ligands. To this end, we first compared the performance of NNAlign_ MA
trained on the complete HLA-I data set (referred to as the MA model) to the performance when
trained only on the subset of SA data (referred to as the SA model). Note, that this SA model
is trained identically to NetMHCpan-4.0, with the only exception of the removal of overlapping
peptides between the SA and MA described above. This benchmark (Figure 3.4-A) demonstrated
that the MA model exhibited a consistently (and statistically significant, p < 0.0001, paired t
test) higher performance when evaluated on the MA data (median AUC of 0.9769), compared with
the SA model (median AUC of 0.9712). On the other hand, as expected, the MA and SA models
showed an overall comparable predictive performance when evaluated on the SA data (median AUC
of 0.9842 versus 0.9839). We hypothesized that NNAlign MA would demonstrate a performance
gain over NNAlign SA for alleles where the SA data are either limited or absent. The results
displayed in Figure 3.4 confirmed this. Here, the median number of positives for SA data sets
where NNAlign_ MA outperforms NNAlign_SA was 57 whereas the number for the SA data sets
where NNAlign SA won was 435. Further, was the performance gain of NNAlign MA on the
MA data found to be largest for data sets characterized by alleles absent from the SA data. Last,
we investigated if the MA model also demonstrated improved performance compared with the SA
model for binding affinity (BA) predictions. Here, we evaluated the performance of the two models
in terms of the allele specific PCC on the BA data using cross validation. Also, here did the MA
significantly outperform the SA model with median PCC values of 0.766 and 0.759 (p < 0.005,
binominal test).

Next, we investigated how the peptidome for the MA EL data in each data set was distributed
among the alleles of the three loci HLA-A, HLA-B and HLA-C. To do this, we extracted the number
of ligands predicted by NNAlign_ MA to be restricted by HLA-A, HLA-B and HLA-C for each cell
line present in the MA EL data set and then calculated the proportion of ligands associated to a
given loci relative to the total amount of peptides in the cell line. The result of this analysis is
shown in Figure 3.4-B and confirms the general notion that HLA-A and HLA-B have comparable
peptidome repertoire size, whereas the peptidome size of HLA-C, in comparison, is substantially
reduced [197]. Although this is not a novel observation, to the best of our knowledge this is the
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Figure 3.4. Benchmark of the prediction method on the HLA-I data. A,
Performance of the SA and MA trained models on the SA EL and MA EL data sets,
expressed in terms of AUC. Each point corresponds to one SA or MA data set. SA
data corresponds to 55 single-allele EL data set. MA data consist of EL data from
50 different cell lines, each expressing more than one MHC molecule. To evaluate the
MA data, each data point was assigned the highest prediction value across all possible
MHC restrictions in the given cell line data set (for further details, see Materials and
Methods). Performance values for the SA model on the SA data sets, and for the MA
model on the SA and MA data, were extracted from the cross-validated predictive
performance. B, The relative peptidome size for the three loci (HLA-A, HLA-B and
HLA-C) as predicted by NNAlign_ MA for the different MA data sets. Each data
point gives the relative proportion of ligands in each MA data set predicted to be
restricted by a HLA from the given locus. The HLA restriction for each ligand data
was estimated from the evaluation performance of the cross-validation as described
in Material and Methods. Only data sets where HLA expression is annotated for
all three loci were included. C, Frank values for the epitope evaluation data set for
NetMHCpan-4.0 and models trained with only SA data (SA Model) and with SA
and MA data (MA Model). Red dots correspond to epitopes restricted to HLAs
that were part of the SA training data, whereas blue points refer to Frank values for
epitopes with HLA restrictions absent from the SA training set. For visualization,
Frank values of 0 are displayed with a value of 0.00004. HLAs in the category “Alleles
absent from SA data” are HLA-B*13:02, HLA-B*55:01 and HLA-C*01:02. D) Frank
values for the epitope evaluation on NetMHCpan-4.0, MixMHCpred, MHCFlurry
(trained on BA data), MHCFlurry EL (trained on BA and EL data) and the models
trained with only SA data (SA Model) and MA data (MA Model). For visualization,
Frank values of 0 are displayed with a value of 0.00004.
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first fully automated analysis of EL data demonstrating this. Some clear outliers are present in
the figure where either the HLA-A or HLA-B peptidome repertoires are highly reduced compared
with the median values. A few such examples include the HL-60, CA46, Mel-624 and HEK293 cell
lines where either the entire HLA-A or HLA-B locus appears to have been deleted or made non-
functional. These observations agree with results from earlier studies for these cell lines (for details
refer to Supplementary Table 3.S8), suggesting the power of NNAlign MA also for identification
of loss or down-regulation of HLA expression directly from EL data sets.

Evaluation on HLA-I Epitopes from IEDB

To further investigate the predictive power of NNAlign. MA, we employed an evaluation set of
epitopes of length 8 —14 extracted from IEDB (see Materials and Methods for details). Here, we
divided the data set into two subsets; one containing the epitopes restricted to HLAs that were
part of the SA training data set, and one where the HLAs were not present in the SA training data.
The results of the evaluation on these two data sets for the SA and MA models, and the state-of-
the-art method NetMHCpan-4.0 are shown in Figure 3.4-C in terms of Frank values. This measure
reflects the false-positive rate, and a value of 0 corresponds to the perfect prediction (for details
see Materials and Methods). For epitopes restricted to HLA molecules that are part of the SA
data set (red points), the figure displays a comparable performance of the MA and NetMHCpan-4.0
methods (median Frank values 0.0021 and 0.0020, p < 0.3, paired t test), and a significantly worse
performance of the SA method (median Frank 0.0022, p < 0.0025 paired t test)). Further, when
evaluated on the small set of epitopes whose HLA restrictions are only present in the MA data (blue
points), the performance of the MA model is substantially increased compared with both the SA
and NetMHCpan-4.0 models (average Frank of 0.0091 compared with 0.0186 and 0.0166 for the SA
and NetMHCpan models). These results demonstrate how the NNAlign_ MA model also when it
comes to prediction of T-cell epitopes achieved state-of-the-art performance, and further is capable
of benefiting from MA data to expand the allelic coverage outside SA data set to improve the allelic
coverage and predictive power.

Finally, in Figure 3.4-D, the evaluation was expanded to include the MHCFlurry (trained with-
out and with EL data) and MixMHCpred methods limiting the benchmark to include only HLA
molecules covered by all methods, thus including only HLA alleles with previously well-characterized
binding motifs (for details on the benchmark refer to Materials and Methods). The results of
this benchmark confirmed a comparable performance of NNAlign MA (median Frank 0.0021) to
NetMHCpan-4.0 (median Frank 0.0021), and a small (but statistically significant, p < 0.05 paired t
test, in all cases except for MHCFlurry) drop in performance of MHCFlurry (median Frank 0.0031),
MHCFlurry EL (median Frank 0.0033), MixMHCpred (median Frank 0.0023) and NNAlign SA
(median Frank 0.0024). This result confirms the state-of-the-art performance of NNAlign MA.

A Specificity Leave-out Benchmark

All the benchmarks performed hereto were conducted in situations where the MA data shared high
HLA overlap with the SA data. By way of example, over 75% (51 of 67) of the alleles in the MA
data set were part of the SA data, and 94% (63 of 67) share a distance of less than 0.1 to an allele in
the SA data as measured from the similarity between pseudo sequences (for details on this similarity
measure see Materials and Methods), a distance threshold earlier demonstrated to be associated
with high predictive accuracy of the pan-specific prediction model [238].

As stated above and confirmed by the results in Figure 3.4-A and 3.4-C, the main power of
NNAlign_ MA is to effectively extend the allele-space covered by HLA annotated EL data leading
to an improved predictive power outside the space covered by SA data. Given the high allelic over-
lap between the MA and SA data set, it is hence not surprising that the impact of including MA
data in these benchmarks was limited. Therefore, to further test the power of the NNAlign_ MA
method in a more extreme setting, we conducted an experiment where parts of the SA data were
left out from the training data leaving part of the HLA space covered only by MA data. In short,
we removed all SA data for HLA molecules belonging to (or similar to alleles in) the HLA-A2 and
HLA-A3 supertypes [237], effectively pruning off whole branches from the tree of HLA specificities
(Figure 3.5 left panel) (for details on this pruning refer to Materials and Methods). This scenario
thus simulates a situation where the MA data describes binding specificities that a novel compared
with any specificity contained in SA training data. Given this, the binding motifs in the MA data
cannot simply be inferred from a close neighbor in the SA data, making the challenge of HLA de-
convolution non-trivial. This experiment therefore allows us to investigate how the NNAlign MA
method can benefit from MA data to accurately characterize the binding specificity of HLA molecule
not characterized by SA data, and from such MA data expand the HLA coverage of the trained
prediction model.
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Figure 3.5. HLA supertype pruning experiment. The left panel shows a
functional tree of HLA specificities estimated using MHCcluster [239]. Branches
in light blue and red correspond to the A2 and A3 HLA supertypes. In the HLA
supertype tree pruning experiment, SA data for HLA molecules belonging to both
these branches were removed. Right panel shows binding motifs for A2 and A3
supertype alleles from the MA EL data set predicted by the MA and SA models.
Motifs were constructed from the top 1% of 1,000,000 random natural 9mer peptides
predicted by each model. SA EL data show motifs derived from SA EL data (not
included in the training). For alleles marked with * no SA EL data was available and
motifs were obtained from NetMHCpan from http://wuw.cbs.dtu.dk/services/
NetMHCpan/logos_ps.php

In the benchmark, SA and MA models were trained as described above on the pruned SA and
complete MA data, and the predictive performance was evaluated on SA EL data for the alleles on
the pruned branch. Note, that this evaluation was done respecting the data partitioning of the cross
validation to avoid introducing a bias in favor of the MA model. The performance was estimated
in terms of AUCO.1 resulting in average values of 0.599 versus 0.852 for the SA and MA models
respectively (for details on the performance values see Supplementary Table 3.S9).

Next, binding motifs for the alleles in the MA data from the A2 and A3 supertypes were
estimated for the MA and SA models and compared with motifs derived from SA EL data if
available (see Figure 3.5 right panel). Here, we observed a high overlap between the motifs of the
MA model motifs obtained from SA EL data, and a likewise low overlap of the motifs obtained
by the SA model. Note, also here that the agreement between the MA model and SA EL data
motifs was dependent on the number of ligands assigned to the given allele from the MA data, i.e.
HLA-A*02:01 was assigned 26,038 and HLAA*02:05 only 917 ligands from the MA data resulting in
a somewhat lower agreement between the two motifs for HLAA*02:05 compared for HLA-A*02:01.
Finally, we reinvestigated the performance of the SA and MA models trained on the pruned SA
data set, on the subset of 358 epitopes restricted by the 11 alleles covered by the two A2 and A3
supertypes. This benchmark confirmed the superior performance of the MA model over the SA
model with median Frank values of 0.0044 compared with 0.0393 (p < 10715, paired t test). Note,
the performance of the full MA model on this epitope data set was 0.0032. Taken together these
results demonstrate the power of the NNAlign_ MA to accurately characterize individual binding
motifs of molecules from MA data only.

BoLA-I Benchmark

Having demonstrated how NNAlign MA was capable of benefitting from MA EL data to boost
predictive power and expand the allelic coverage also in a setting where the MA data shared limited
allelic overlap to the SA data, we next turned to the BoLA (Bovine Leukocyte Antigen) system.
Because binding data (both BA and EL) is more scarce for BoLA compared with HLA, and be-
cause the relative expression of MHC molecules within a given cell line varies in a more dramatic
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manner for the bovine system compared with humans, analyzing and deconvoluting BoLA MA
EL data is more challenging compared with HLA, and working within this system allowed us to
better appreciate and assess the strength and potential limitations of the NNAlign_ MA framework.

In a previous work, a prediction model for BoL A peptide interactions, NetBoLLApan, was trained
using NNAlign on SA BA (including binding affinity data for 7 BoLA molecules) and EL. MA data
from 3 BoLA-I homozygous cell lines, describing the BoLA haplotypes A10, A14, and A18 [167].
Because of the prior limitation of the NNAlign framework only admitting SA data for training, in
NetBoLApan the EL MA data had to be first deconvoluted using GibbsCluster and then manually
annotated to the individual BoLLA molecules of each cell line by visual inspection. Since this earlier
publication, we have generated MA EL data for additional 5 cell lines. Using these data, we trained
and evaluated the NNAlign  MA framework on the SA data described above combined with EL MA
data for a total of 8 BoLA cell lines (for details on these data sets, refer to Materials and Methods
and Supplementary Table 3.56).

After training, we proceeded to investigate the different binding motifs captured by the model.
We were interested in the motifs of the BoLLA molecules shared between multiple haplotypes. One
such example is BoLA-2*02501, present in the A14, and A15 haplotypes. Although the motif for
this molecule in our earlier work showed a strong preference for G/Q and L at P2 and P9 respec-
tively (Figure 3.6-B), the new NNAlign framework captured a completely different signal, with a
consistent proline (P) signal on most positions (see Fig. 3.6-A). Also, the number of ligands assigned
to BoLA-2*02501 was extremely low for the three cell lines expressing this molecule (less than 1.5%
in all three cases). A prime source of this result is the very large distance (0.426) of BoLA-2*02501
to the SA training data (for details on this distance measure refer to section Distance Between
Pairs of MHC Molecules above). In comparison, the maximum distance between any molecule in
the MA data to the SA training data for the HLA system is less than 0.13. These large pairwise
distances in the BoLA system have two strong impacts on the predictive behavior of NNAlign  MA.
First and foremost, the model pretrained on the SA is expected to have limited power to predict
the binding motif of the BoLA-2*02501 molecule (in the pretrained model, BoLA-2*02501 prefers
P at P2). Secondly, the prediction values of the pre-trained model will be lower for this molecule
compared with molecules that share higher similarity to the SA data used for pre-training. To deal
with the latter of these two issues, we devised a rescaling scheme for the prediction score in the MA
annotation step of the NNAlign MA framework, and rescaled the raw prediction by comparing
it to a score distribution obtained from a large set of random natural peptides (for details refer
to the Prediction Score Rescaling section in materials and methods). This score distribution was
recalculated in each training iteration before the MA annotation. Including this rescaling step, the
number of ligands estimated by cross-validation to be assigned to BoLA-2*02501 from the three
cell lines increased to 13% on average.

However, investigating the motifs from the ligands predicted to be associated with BoLA-
2%02501 from the A14 MA data to that from A12/A15 and A15 MA data, an inconsistency became
apparent (see Figure 3.6-C and 3.6-D). Here, the motif obtained from the A14 MA data showed
an additional preference for G at P2 that was completely absent for the motif obtained from the
A15 and A12/A15 MA data. Re-examining the original publication that described the BoLA allele
expression profile in the A14 haplotype [240], suggested an explanation to the apparent inconsisten-
cies in the predicted BoLA-2*02501 binding motifs. In that paper, A14 was found to express 4 and
not 3 BoLA alleles, as was assumed in our earlier publication and used in the first NNAlign_ MA
analysis. The extra allele expressed is BoLA-6%04001. After including this extra allele in the A14
haplotype and retraining the model, we obtained the binding motifs displayed in Figure 3.6-E, show-
ing a motif for BoLA2*02501 consistent with the motif identified in the A12/A15 and A15 MA data
(Figure 3.6-D), and a likewise well-defined motif for BoLA-6*04001 (Figure 3.6-F). These results
clearly suggest that the motif earlier reported for BoLA-2*02501 (Figure 3.6-B) was a mixture of
the motifs of BoLA-2*02501 and BoLA-6*04001.

The benchmark on the BoLA EL data confirmed the power of the NNAlign_ MA method to
achieve complete, consistent and well-defined deconvolution and motif identification of MHC alleles
in the MA EL data sets, also in this challenging case with limited overlap between the SA and MA
data (for details on the deconvolution refer to Supplementary Figure 3.512). One notable example
demonstrating this is BoLA-1:00901, a molecule contained within the A15 haplotype. BoLLA-1:00901
shares limited overlap with the SA training data (distance to the SA data D = 0.137), and the motif
predicted by the NNAlign MA method after the pre-training on the SA data share, as expected,
high similarity to the motif predicted by NetBoLApan (Figure 3.7). This pre-trained motif is,
however, altered substantially after the training of the model on the EL. MA BoLLA data, resulting
in a strong preference for Histidine (H) at PQ (Post-training motif in Figure 3.7). To validate
the accuracy of the motif predicted for BoLA-1:00901, we performed in vitro binding assays of a
combinatorial peptide library to the BoLLA1:00901 molecule (for details see Materials and Meth-
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Figure 3.6. Identification of binding motifs for the BoLA-2*¥02501
molecule. (A) Binding preference for this molecule found by the NNAlign MA
method without score rescaling; (B) motif logo found in our previous work [167].
The top five repeating binding cores present in each motif alignment are shown below
each logo. Binding motifs for BoLA-2*¥02501 obtained by NNAlign_ MA trained in-
cluding three BoLA alleles (BoLA-1*02301, BoLA-4*02401, and BoLA-2*02501) for
the A14 MA data from ligands predicted using cross-validation to be restricted by
BoLA-2*%02501 from the A14 MA data (C), and from the A15 and A12/15 MA data
sets (D). Binding motifs for the BoLA-2*02501 (E) and BoLA-6*04001 (F) molecules
as estimated from ligands in the A14 MA data as predicted by NNAlign_MA using
cross-validation when expanding the list of alleles in A14 to include BoLLA-6*04001.

ods). The in vitro binding motif showed very high similarity to the Posttraining motif predicted by
NNAlign  MA (Figure 3.7).

Evaluation on BoLA-I Epitopes

Having demonstrated the power of the proposed model also for the challenging BoLA system,
we next evaluated its predictive power on a set of experimentally validated BoLLA restricted CD8
epitopes. The result of this evaluation for NNAlign. MA and NetBoLApan confirmed the high per-
formance of the proposed model (Table 3.2). Overall, the performance of the NNAlign MA model is
comparable to that of NetBoLApan. However, one notable example where the two models showed
very different performance is the FVEGEAASH epitope, restricted by BoLA-1: 00901. For this
epitope, the Frank performance value of NetBoLApan was 0.121-in other words, the true positive
is found 12.1% down the list of candidate peptides predicted by NetBoLApan.Including the novel
BoLA EL data and training the model using the NNAlign_ MA framework, the Frank value for
this epitope improved to 0.000—the epitope is the single top candidate predicted by NNAlign_ MA.
This result aligns with the experimental binding motif analysis of the BoLA-1:00901 molecule, ex-
hibiting a strong preference for H at the C-terminal (Figure 3.7). In summary, the results displayed
in Table 3.2 demonstrate the high predictive power of the model trained including the BoLA EL
data also for prediction of CD8 epitopes. The average Frank value of NNAlign MA over the 16
epitopes is 0.0033, meaning that on average 99.67% of the irrelevant peptide space can be excluded
by the prediction model while still identifying 100% of the epitopes.

Performance values for NetBoLApan and NNAlign MA are reported as Frank. In short, we
predicted binding for all overlapping 8 —11mer peptides from the source protein of the epitopes to
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Figure 3.7. Binding motifs for the BoLA-1*00901 molecule estimated by
different in silico and in vitro binding methods. Binding motifs for the three in
silico methods were estimated from the top 0.1% of 1,000,000 random natural 9mer
peptides with predicted binding by the given method, for BoLLA-1:00901. The in
vitro binding motifs were estimated using a position scanning combinatorial peptide
library, as described in Materials and Methods. The three in silico methods are:
NetBoLApan [167], trained including EL data for the cell lines A10, A14 and A18;
Pre-training, the NNAlign_ MA method pre-trained on SA data; Post-training, the
NNAlign MA method after completing the training including MA data.

Allele Epitope Antigen Npep  NetBoLApan NNAlign_MA

BoLA-6*01301 VGYPKVKEEML Tpl 2138 0.0098 0.0070

BoLA-6*04101 EELKKLGML Tp2 662 0.0000 0.0000

BoLA-2*01201 SSHGMGKVGK Tp2 662 0.0060 0.0045

BoLA-T2c FAQSLVCVL Tp2 662 0.0136 0.0151

T.parva BoLA-2*01201 QSLVCVLMK Tp2 662 0.0015 0.0015
BoLA-AW10 TGASIQTTL Tp4 2282 0.0000 0.0000

BoLA-1*00902 SKADVIAKY Tp5 586 0.0000 0.0000

BoLA-T7 FISFPISL Tp7 2850 0.0172 0.0112

BoLA-3*00101 CGAELNHFL Tp8 1726 0.0029 0.0035

BoLA-1*02301 AKFPGMKKS Tp9 1302 0.0054 0.0023

BoLA-1:00901 FVEGEAASH ICP4 5350 0.1215 0.0000

BoLA-3:00201 AGPDLQLARL ICP4 5350 0.0000 0.0000

BHV BoLA-3:00201 TTPEILIEL Circ 1006 0.0000 0.0000
BoLA-3:01701 TGARAGYAA ICP4 5350 0.0350 0.0013

BoLA-4:02401 GAFCPEDW ICP22 1214 0.0066 0.0058

BoLA-2:01801 APAPSPGAL Circ 978 0.0020 0.0000

Average 0.0138 0.0033

Table 3.2. Predictive performance of NNAlign MA and NetBoLApan
on the set of known CD8 epitopes.

the known BoLA-I restriction molecule. Then, the performance for each epitope was reported as
the Frank score. Epitope data for Theilera parva (T. parva) and Bovine Herpes Virus (BHV) were
obtained from three sources [167,241,242]. The lowest Frank value for each epitope is highlighted
in bold.

HLA-ITI Benchmark

To prove that the ability of NNAlign  MA to deal with MA data also extended to MHC 11, a separate
study was conducted on a set of MHC II BA and EL data. Here, we compared the cross-validated
performance of NNAlign MA trained on SA data alone (SA model) versus NNAlign MA trained
on the full data set including MA data (MA model). Both models were evaluated individually on
the SA and MA data sets as described earlier for the HLA-I benchmark. The conclusions from this
evaluation (Figure 3.8-A) were similar to those obtained for the HLA-I data: when evaluated on
SA data, the SA model demonstrated a modest (and statistically insignificant, p = 0.125, binomial
test) performance gain compared with the MA model. However, when it comes to the MA data, the
MA model significantly outperformed the SA model (p = 7.6 * 1075, binomial test excluding ties).
In Supplementary Figure 3.513, we further show the binding motifs for MA data included in this
study demonstrating that also for class II is the NNAlign MA framework in most cases capable
of achieving clear and consistent MHC motif deconvolution. However, as for the class I data does
the accuracy of the motifs identified by NNAlign_ MA also here depend on the number of ligands
assigned to a given HLA. For example, is the motif for HLA-DRB1*13:01 most often derived from
a very small number of ligands resulting in a limited similarity between the motifs obtained from
the different MA data sets. This observation underlines the critical dependence of NNAlign_ MA
on the quality of the input data.
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Figure 3.8. Method benchmarking on HLA class II data. A, Performance
of NNAlign MA trained on SA and MA data evaluated in crossvalidation. Model
performance is given in terms of AUC and calculated as described in Figure 3.4.
Each point refers to an individual SA or MA data set. B, Epitope Frank scores
of NetMHCIIpan-3.2 and NNAlign MA trained on SA and MA data evaluated on
CD4+ epitopes from the IEDB [225]. The plot compares the Frank distribution of
the MA and SA models and each point represents the Frank of an epitope. For
visualization, Frank values of 0 are displayed with a value of 0.0008.

Next, we evaluated the performance of the SA and MA models together with NetMHCIIpan-3.2
on an independent data set of CD4+ epitopes (for details on this data set refer to Materials and
Methods. The results of this benchmark are depicted in Figure 3.8-B in terms of Frank values. Here,
the median Frank values were respectively 0.02403, 0.03155, and 0.03734 for the three methods MA,
SA and NetMHCIIpan-3.2. The difference in Frank between the MA and the two other methods
was in both cases found to be statistically significant (p < 0.01, binomial test excluding ties). These
results strongly suggest that the NNAlign MA framework extends its predictive power also into
MHC class II.

Discussion

Advances in Mass Spectrometry have dramatically increased the throughput of immunopeptidomics
experiments, with several thousands of peptides directly eluted from their cognate MHC molecule
in a single experiment. This type of data has greatly changed our knowledge base for characterizing
MHC antigen processing and presentation. In general, MS eluted ligands originate from multiple
MHC molecules, and MS data sets therefore consist of a mixture of motifs, each corresponding to the
binding specificity of one of the MHC molecules expressed by the cell line. Although several tools for
the deconvolution of multiple motifs have been proposed, they all tend to underestimate the num-
ber of specificities in a sample, especially for haplotypes with overlapping MHC binding motifs and
for alleles with low protein expression. Even for peptidomes that can be confidently deconvoluted,
the pairing between motifs and the expressed MHC alleles is often not trivial, and in many cases
must be done manually by visual inspection - with the potential sources of error this process entails.

Here, we have described a fully automated approach, NNAlign  MA, aiming to resolve these
challenges. The approach taken in NNAlign_ MA is very simple. The method applies a pre-training
period where only single allele data (peptide data characterized by having a single MHC association)
are included. After this pre-training, the multi-allele data (peptide data characterized by having
two or more MHC associations) are annotated using the current prediction model to predict binding
to all MHC molecules possible for the peptide, and next defining a single MHC association from the
highest prediction value. In this annotation step, multiallele data are thus casted into a single-allele
format, becoming manageable by the NNAlign method and therefore enabled for training. This
multi allele annotation step is iteratively performed in each training cycle.

We have applied the NNAlign MA method to analyze and interpret three large-scale multi-
allele MHC eluted ligand data sets, and demonstrated its unprecedented performance compared
with state-of-the-art methods. First, we applied the method to analyze multi-allele HLA MS eluted
ligand data from 50 cell lines. Using this data, we demonstrated how the method in most cases was
capable of correctly identifying distinct binding motifs for each of the HLA molecules expressed in
a given cell line. This result contrasts with findings using earlier methods such as GibbsCluster
and MixMHCp that in most cases fail to identify one or more motifs. Also, NNAlign MA was
in close to all cases capable of accurately associating each identified motif with a specific HLA
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molecule. These results highlighted the high performance of NNAlign MA compared with current
state-of-the-art methods such as MixMHCp/MixMHCpred, where the association of binding motifs
to individual HLA molecules is achieved by exclusion principles identifying binding motifs shared
uniquely between different cell line data sets.

In terms of predictive performance, the models trained using the NNAlign_ MA method were
found to outperform conventional methods (trained on single-allele data), both for prediction of
HLA eluted ligand data and CDS8 epitopes. As expected, this performance gain was most pronounced
for ligands/epitopes restricted by HLA molecules characterized by limited or no single-allele data.
This observation underlines the single most important power of NNAlign_ MA, namely to effec-
tively expand the part of the HLA space covered by accurate predictions. By way of example, the
SA EL data included in this study covers 51 HLA molecules. Earlier studies have demonstrated
that pan-specific prediction methods allow to accurately predict the binding specificity also for
HLA molecules not characterized by binding data, if their distance to a molecule characterized by
binding data is 0.1 or less (for a definition of this distance refer to Materials and Methods) [238].
Applying this rule to the set of 10,558 functional HLA class I A, B and C alleles contained within
IPD-IMGT /HLA release 3.35 [243] results in a coverage of 76% (8,051 out of 10,558 molecules). By
integrating the MA data, the number of alleles covered by EL data is expanded to 85, and number
of HLA molecules covered by accurate predictions to 94% (9,949 of 10,558 molecule).

This power of NNAlign_ MA to expand the allelic coverage was further demonstrated in a speci-
ficity leave-out experiment. Here, entire HLA specificity groups were removed from the single-allele
data set, and the NNAlign MA framework applied to analyze and characterize multi-allele data
including HLA molecules from these removed specificity groups. The result of this experiment con-
firmed the power of NNAlign_ MA to expand the allelic coverage and accurately identifying binding
motifs for individual HLA molecules in multi-allele data, also in situations where no explicit infor-
mation about the binding preferences of the investigated molecules was part of the single-allele
training data.

The HLA system has been studied in great detail over the past decades, and peptide-MHC
binding data are available for hundreds of alleles. To further explore the predictive power of
NNAlign_ MA for MHC systems characterized by limited data, we turned to the Bovine Leuko-
cyte Antigen (BoLA) system, and applied NNAlign_ MA to analyze MS MHC eluted ligands data
sets from 8 cell lines expressing a total of 8 haplotypes covering 16 distinct BoLLA molecules. These
BoL A molecules shared, for most parts, very low similarity to the molecules included in the single-
allele data. Also in this setting, NNAlign_ MA was demonstrated to accurately identify binding
motifs in all BoLA data sets, and the model trained on the BoLA MA data demonstrated a high
predictive power for identification of known BoLA restricted CD8 epitopes, identifying the epitopes
within the top 0.3% of the peptides within the epitope source protein sequence. These results thus
further demonstrated how NNAlign MA was capable of correctly deconvoluting binding motifs
present in multi-allele data in situations with limited shared similarity to the single-allele data.

As a final validation, the NNAlign_ MA framework was applied to MS EL data from MHC II.
Also here, the models were evaluated in cross-validation and on an independent set of CD4+ epitopes
and the results were in agreement with the results obtained for MHC I. That is, the model trained
including MA data showed significantly improved performance compared with models trained on
SA data only, when evaluated on both MA EL data and CD4 epitopes.

In a recent work, Bulik-Sullivan et al. [244] have suggested an alternative approach to decon-
volute and train MHC antigen presentation prediction models using an allele-specific architecture,
thus limiting the predictive coverage of the model to MHC alleles present in the training data. This
contrasts with the architecture of NNAlign_ MA, which enables pan-specific predictions covering
alleles outside the training data (as described above). Also, the allele-specific nature of the method
proposed by Bulik-Sullivan et al. limits the power of the tool to identify motifs and construct
prediction models for the alleles included in the training data. By way of example in the data
presented by Bulik-Sullivan et al., less than 65% of the alleles in their training set ended up covered
by a prediction model. Future work and independent benchmarking will allow us to evaluate which
of the two approaches is optimal for a given epitope discovery setting.

We have demonstrated how NNAlign MA achieves binding motif deconvolution driven by simi-
larity to MHC molecules characterized by single-specificity data, and by principles of co-occurrence
and exclusion of MHC molecules between different poly-specificity MS eluted ligand data set. The
NNAlign_ MA failed to construct accurate binding motifs for a few limited HLA molecules. These
cases were all characterize by very few ligand data, and by alleles only present in single MA data
sets. This observation, combined with the power of NNAlign_ MA to expand the allelic coverage
of the resulting prediction model, points to a direct application to effectively achieve broad and
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high accuracy allelic coverage for regions of the MHC repertoire with yet uncharacterized binding
specificities. Guided by NNAlign MA, sets of cell lines with characterized HLA expression should
be selected for LC-MS/MS to maximize allele co-occurrence, allele exclusion and allele similarities
with the comprehensive set of available EL data so that the NNAlign  MA motif deconvolution for
the uncharacterized binding specificities can be achieved in an optimal manner. We believe this
approach for generating additional MA data to be a highly effective manner to further improve
prediction of MHC antigen presentation, moving beyond the limitations associated with fulfilling
this task using artificial single allele MS setups.

Although peptide-MHC binding is arguably the most selective step in the MHC antigen presen-
tation pathway, other properties contribute to determining immunogenicity of T-cell epitopes. The
above-mentioned work by Bulik-Sullivan et al. [244], attempted to incorporate gene expression levels
and proteasome cleavage preferences in a machine-learning model, showing promising improvements
for the prediction of cancer neo-epitopes. For the MHC class II system, consistent signatures of
peptide trimming and processing have been detected, with pioneering attempts to incorporate them
in T-cell epitope prediction models [215,245]. In future developments of the NNAlign  MA frame-
work, the effect on the predictive power of incorporating such additional potential correlates of
immunogenicity will be investigated.

Overall, we have evaluated the proposed NNAlign_ MA framework on a large and diverse set of
data, and demonstrated how the method in all cases was capable of achieving a complete deconvolu-
tion of binding motifs contained within poly-specific MS eluted ligand data, and how the complete
deconvolution enabled training prediction models with expanded HLA allelic coverage for accurate
identification of both eluted ligands and T-cell epitopes. In conclusion, we believe NNAlign  MA
offers a universal solution to the challenge of analyzing large-scale MHC peptidomics data sets
and consequently affords an optimal way of exploiting the information contained in such data for
improving prediction of MHC binding and antigen presentation. The modeling framework is read-
ily extendable to include peptides with posttranslational modifications [159,246], and signals from
antigen processing located outside the sequence of the ligands [215]. Given its very high flexibility,
we expect NNAlign MA to serve as an effective tool to further our understanding of the rules
for MHC antigen presentation, as a guide for improved T-cell epitope discovery and as an aid for
effective development of T-cell therapeutics.
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Supplementary Material

Figure 3.S9. Full NNAlign_ MA motif deconvolution for the Multi Allele
(MA) HLA-I data analyzed in this work. Each row corresponds to a cell line
present in the training data (50 in total;, for more details, refer to Supplementary
Table 3.S6). Using cross validation, each ligand is assigned to one of the HLA
alleles expressed in the given cell line. Using this assignment, binding motifs were
generated for each allele in each cell line using Seq2Logo. To remove potential MS
contaminants, only ligands with a prediction score greater than 0.01 were included.
Above each logo is given the number of sequences associated to the corresponding
HLA allele. For details on the accuracy of this clustering, refer to Supplementary
Figures 3.510 and 3.S11
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Figure 3.S10. Comparison between NNAlign MA deconvoluted motifs
and motifs derived from single-allele (SA) data from the IEDB [225] for
alleles characterised by at least 100 ligands for both SA data and MA
deconvolution data. For each HLA allele, the NNAlign_ MA motif is displayed
in the first column; the motif derived from available SA data in the second column.
The Pearson correlation coefficient between two motifs is displayed next to the cor-
responding HLA name (for details on how this is calculated refer to materials and
methods). Alleles whose logo was generated from data contained only in the MA
training set (this is, no SA data was present in the training phase) are tagged with an
asterisk. To remove potential MS contaminants, only ligands with a prediction score
greater than 0.01 were included. The amount of sequences employed to construct a
given logo is displayed on top of each logo.
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Figure 3.S11. Correlation matrices between NNAlign_ MA motifs for
HLA alleles that are shared between five or more cell lines. Each matrix dis-
plays the Pearson correlation coefficients between all motifs found by NNAlign  MA
for a given HLA allele, across all the cell lines sharing the allele (for details on how
the correlation is calculated refer to materials and methods). The average Pearson
correlation coefficient for each matrix is given next to the corresponding allele name.
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Figure 3.S12. Full NNAlign_ MA motif deconvolution for the Multi Allele
(MA) BoLA-I data analyzed in this work. Each row corresponds to a MA data
set present in the training data. Using cross validation, each ligand is assigned to one
of the BoLA alleles expressed in the given data set. Using this assignment, binding
motifs were generated for each allele in each cell line using Seq2Logo. To remove
potential MS contaminants, only ligands with a prediction score greater than 0.01
were included. Above each logo is given the number of sequences associated to the
corresponding BoLA allele.
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Figure 3.S13. Full NNAlign_ M A motif deconvolution for the Multi Allele
(MA) HLA-II data analyzed in this work. Each row corresponds to a MA data
set present in the training data. Using cross validation, each ligand is assigned to one
of the HLA alleles expressed in the given data set. Using this assignment, binding
motifs were generated for each allele in each cell line using Seq2Logo. To remove
potential MS contaminants, only ligands with a prediction score greater than 0.01
were included. Above each logo is given the number of sequences associated to the
corresponding HLA allele.
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Figure 3.S14. Prediction score rescaling for the BoLA-2*02501 and
BoLA-4%02401 molecules. Left panel: proportion of ligands as a function of
the prediction scores for both BoLA molecules. In this case, distributions exhibit
different characteristics (i.e. more than 13% of random natural peptides have a
prediction score greater than 0.3 for BoLA-4*02401, while for BoLA-2*0251 this
number is less than 3%). Right panel: proportion of ligands as a function of the Z-
Score transformation of the prediction scores. This type of rescaling allows reshaping
both distributions so they display similar silhouettes
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Cell linelD | Positives | Negatives HLA-A HLA-B HLA-C Source PMID
CD165 5364 132869, HLA-A*02:05 HLA-A*24:02 HLA-B*15:01 HLA-B*50:01 HLA-C*03:03 HLA-C*06:02
CM467 7401 184646, HLA-A*01:.01 HLA-A*24:02 HLA-B*13:02 HLA-B*39:06 HLA-C*06:02 HLA-C*12:03
GD149 9756 208444 HLA-A*01:01 HLA-A*24:02 HLA-B*38:01 HLA-B*44:03 HLA-C*06:02 HLA-C*12:03
MD155 4374 108036, HLA-A*02:01 HLA-A*24:02 HLA-B*15:01 HLA-B*18:01 HLA-C*03:03 HLA-C*07:01
PD42 2577 48693 HLA-A*02:06 HLA-A*24:02 HLA-B*07:02 HLA-B*55:01 HLA-C*01:02 HLA-C*07:02 28832583
RA957 11037 232658 HLA-A*02:20 HLA-A*68:01 HLA-B*35:03 HLA-B*39:01 HLA-C*04:01 HLA-C*07:02
TIL1 5445 140312 HLA-A*02:01 HLA-A*02:01 HLA-B*18:01 HLA-B*38:01 HLA-C*05:01 -
TIL3 8799 206212 HLA-A*01:01 HLA-A*23:01 HLA-B*07:02 HLA-B*15:01 HLA-C*12:03 HLA-C*14:02
Apherl 6145 123349 HLA-A*03:01 HLA-A*29:02 HLA-B*44:02 HLA-B*44:03 HLA-C*12:03 HLA-C*16:01
Apher6 1962 39798| HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 - HLA-C*07:02 -
Mel-15 21813 395324 HLA-A*03:01 HLA-A*68:01 HLA-B*27:05 HLA-B*35:03 HLA-C*02:02 HLA-C*04:01
Mel-16 11980 264233| HLA-A*01:01 HLA-A*24:02 HLA-B*07:02 HLA-B*08:01 HLA-C*07:01 HLA-C*07:02
Mel-12 3758 88425/ HLA-A*01:01 HLA-A*01:01 HLA-B*08:01 - HLA-C*07:01 - 27869121
Mel-8 6251 119000, HLA-A*01:01 HLA-A*03:01 HLA-B*07:02 HLA-B*08:01 HLA-C*07:01 HLA-C*07:02
Mel-5 4749 106896, HLA-A*01:01 HLA-A*25:01 HLA-B*08:01 HLA-B*18:01 - -
Fibroblast 5289 122127 HLA-A*03:01 HLA-A*23:01 HLA-B*08:01 HLA-B*15:18 HLA-C*07:02 HLA-C*07:04
HCC1143 2780 69565 HLA-A*31:01 - HLA-B*35:08 HLA-B*37:01 HLA-C*04:01 HLA-C*06:02
HCC1937 4976 102331 HLA-A*23:01 HLA-A*24:02 HLA-B*07:02 HLA-B*40:01 HLA-C*03:04 HLA-C*07:02 25576301
HCT116 4174 93208/ HLA-A*01:01 HLA-A*02:01 HLA-B*45:01 HLA-B*18:01 HLA-C*05:01 HLA-C*07:01
JY 2868 60863| HLA-A*02:01 - HLA-B*07:02 - HLA-C*07:02 -
Beell 12199 220971 HLA-A*01:.01 HLA-A*03:01 HLA-B*07:02 HLA-B*27:05 HLA-C*02:02 HLA-C*07:01 24616531
Mel-624 2375 49050, HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-B*14:01 HLA-C*07:02 HLA-C*08:01 27600516
SK-Mel-5 3293 64537 HLA-A*02:01 HLA-A*11:01 HLA-B*40:01 - HLA-C*03:03 -
HEK293 4972 86634 HLA-A*03:01 - HLA-B*07:02 - HLA-C*07:02 -
MAVER-1 7403 171783| HLA-A*24:02 HLA-A*26:01 HLA-B*38:01 HLA-B*44:02 HLA-C*05:01 HLA-C*12:03
HL-60 6607 115694, HLA-A*01:01 - HLA-B*57:01 - HLA-C*06:02 - 26992070
RPMI8226 4524 113201, HLA-A*30:01 HLA-A*68:02 HLA-B*15:03 HLA-B*15:10 HLA-C*02:10 HLA-C*03:04
THP-1 5542 142866, HLA-A*02:01 HLA-A*24:02 HLA-B*15:11 HLA-B*35:01 HLA-C*03:03 -
CA46 2324 62647 HLA-A*26:03 - HLA-B*27:04 - HLA-C*12:02 -
LNT-229 10311 177908, HLA-A*03:01 - HLA-B*35:01 - HLA-C*04:01 »
T98G 10011 216072 HLA-A*02:01 - HLA-B*39:06 - HLA-C*07:02 - 27412690
U-87 11585 241396, HLA-A*02:01 - HLA-B*44:02 - HLA-C*05:01 -
pat-AC2 1369 32168| HLA-A*03:01 HLA-A*32:01 HLA-B*27:05 HLA-B*45:01 - -
pat-C 2983 49759| HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 - HLA-C*07:02 -
pat-CELG 3814 72328 HLA-A*02:01 HLA-A*24:02 HLA-B*15:01 HLA-B*73:01 HLA-C*03:03 HLA-C*15:05
pat-CP2 1790 36895 HLA-A*11:01 - HLA-B*14:02 HLA-B*44:02 - -
pat-FL 3629 74392| HLA-A*03:01 HLA-A*11:01 HLA-B*44:03 HLA-B*50:01 - -
pat-J 2552 42497 HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 - HLA-C*07:02 -
pat-JPB3 1937 35295/ HLA-A*02:01 HLA-A*11:01 HLA-B*27:05 HLA-B*56:01 - -
pat-) T2 1467 29587| HLA-A*11:01 - HLA-B*18:03 HLA-B*35:01 - -
pat-M 2476 53262| HLA-A*03:01 HLA-A*29:02 HLA-B*08:01 HLA-B*44:03 HLA-C*07:01 HLA-C*16:01 27841757
pat-MA 3682 69891 HLA-A*02:01 HLA-A*29:02 HLA-B*44:03 HLA-B*57:01 HLA-C*07:01 HLA-C*16:01
pat-ML 3139 55262| HLA-A*02:01 HLA-A*11:01 HLA-B*40:01 HLA-B*44:03 - -
pat-NS2 636 15212 HLA-A*02:01 - HLA-B*13:02 HLA-B*41:01 - -
pat-NT 2190 53238/ HLA-A*01:01 HLA-A*32:01 HLA-B*08:01 - - -
pat-PF1 4646 86859 HLA-A*01:01 HLA-A*02:01 HLA-B*07:02 HLA-B*44:03 HLA-C*07:02 HLA-C*16:01
pat-R 2372 49169 HLA-A*03:01 HLA-A*29:02 HLA-B*08:01 HLA-B*44:03 HLA-C*07:01 HLA-C*16:01
pat-RT 2537 49846/ HLA-A*01:01 HLA-A*02:01 HLA-B*18:01 HLA-B*39:24 HLA-C*05:01 HLA-C*07:01
pat-SR 2632 57417 HLA-A*02:01 HLA-A*23:01 HLA-B*18:01 HLA-B*44:03 - -
pat-ST 1256 26963 HLA-A*03:01 HLA-A*24:02 HLA-B*07:02 HLA-B*27:05 - -

Table 3.S3. Summary of the multi-allele (MA) data included in the HLA-
I benchmark. “Positives” and “Negatives” refer to the number of positive and
negative instances contained in each cell line data. Further rows show the HLA-A,
HLA-B and HLA-C expressed by a given cell line (two per locus), together with the
Source ID for its corresponding dataset.
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BAdata EL data
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Table 3.S4. Single Allele (SA) Binding Affinity (BA) and Eluted Ligands
(EL) training data summary for the HLA-I system. For the BA training set,
the total amount of sequences per MHC molecule (discarding artificial negatives) is
shown; in the case of EL data, the total amount of positives is displayed.
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ID Positives | Negatives HLA-DRB Source PMID
HLA-11-1 509 5355/ DRB1*01:01 DRB1*04:01 27726376
HLA-11-2 240 2655| DRB1*01:01 DRB1*08:01 27726376
HLA-11-3 200 1890, DRBI*01:03 DRB1*03:01 27726376
HLA-I1-4 327 3285/ DRB1*03:01 DRB1*03:05 27726376
HLA-I1-5 595 6930/ DRB1*03:01 DRB1*15:01 (27452731, 27726376
HLA-11-6 670 7740/ DRB1*04:01 DRB1*07:01 27452731
HLA-11-7 1772 17460/ DRB1*04:01 DRB1*10:01 27726376
HLA-11-8 213 2520/ DRB1*04:01 DRB1*13:01 27452731
HLA-11-9 51 480, DRBI*04:01 DRB1*15:01 27726376
HLA-11-10 210 2475| DRB1*04:02 DRB1*11:04 27726376
HLA-I1-11 682 7335| DRB1*04:03 DRB1*15:01 27726376
HLA-11-12 3216 29565, DRB1*07:01 DRB1*08:01 29632711
HLA-11-13 145 1710, DRBI*07:01 DRB1*¥13:01 27452731
HLA-11-14 496 4860, DRB1*08:01 DRB1*13:01 |27452731, 29632711
HLA-11-15 121 1440, DRB1*08:01 DRB1*15:01 27726376
HLA-11-16 3080 29745, DRB1*08:03 DRB1*13:01 29632711
HLA-I1-17 118 1215/ DRBI*10:01 DRB1*11:01 27726376
HLA-11-18 257 2835/ DRB1*11:01 DRB1*13:02 27726376
HLA-I1-19 65 585| DRBI1*13:01 DRB1*14:01 27452731
HLA-11-20 2426 22365 DRBI1*15:01 DRB5*01:01 28467828
Table 3.S5. Multi Allele (MA) data summary for the HLA-II benchmark.
“Positives” and “Negatives” refer to the number of positive and negative instances
contained in each MA EL data set. Further rows show the HLADRRB alleles expressed
by a given cell line, together with the Source PMID(s) for its corresponding dataset.
Cell lineID | Haplotype | Positives | Negatives BoLA-1 BoLA-2 BoLA-3 BoLA-4 BoLA-6 Source PMID
BOLA-1+01901 | BoLA-2+00801
2123 A12/A15 11872 271523 BoLA-4+02401
BOLA-1+00901 | BOLA-2*02501
5072 ALl 8542 155590 BoLA-2+01801 | BoLA-3*01701 -
2824 A9 9582 153620 BoLA-2%01601 - BoLA-6+01402
5350 A20 11726 24019 - BoLA-202601 | BoLA-3+02701 -
2408 AlS 24305 552309| BOLA-1%00901 | BoLA-2+02501 BoLA-4+02401
1011/500004 A10 10188 148801 BoLA-201201 | BoLA-3+00201 -
641 A18 6615 80170 - - - BoLA-6*01301 | 29115832
2229/104003 Al4 9509 186084 BOLA-1#02301 | BoLA-2%02501 BOLA-4+02401 | BoLA-6+04001

Table 3.S6. Multi Allele (MA) data summary for the BoLA benchmark.
“Positives” and “Negatives” refer to the number of positive and negative instances
contained in each cell line data. Further rows show the BoLA-1, BoLA-2, BoLA-3,
BoLA-4, and BoLLA-6 alleles expressed by a given cell line, together with the Source
PMID for its corresponding dataset. Allele annotation was obtained from Vasoya,
D. et al. [240]
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Table 3.S7. Predicted Positive Predictive Values (PPV) for all clusters
associated with each allele in each cell line the multi allele (MA) dataset
after NN Align_ MA deconvolution. For details on the calculation of PPV, refer
to materials and methods.
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Cell linelD HLA-A HLA-B HLA-C Source PMID(s)
26992070
HL-60 47 851 102 17083564
CA46 71 739 191 26992070
Mel-624 931 48 21 7541714
HEK293 896 80 24 26258424

Table 3.S8. Cell lines with atypical HLA-A or HLA-B peptidome reper-
toire profiles. For each cell line, the relative peptidome size for the HLA-A, HLA-B
and HLA-C loci is given. Peptidome sizes were calculated as described in Figure 3.4-
B. The last column shows the references to earlier publications describing the loss of
the locus for a given cell line.

SA MODEL MA MODEL
HLA-A*02:01 376 778
HLA-A*02:05 533 771
HLA-A*02:07 477 871
HLA-A*03:01 359 896
HLA-A*11:01 361 862
HLA-A*26:01 838 962
HLA-A*29:01 762 873
HLA-A*31:01 409 749
HLA-A*32:01 808 905

Table 3.S9. AUCO.1 performance values for the SA molecules left out
from the training of the A2 and A3 specificity reduced SA and MA mod-
els. Note that not all the molecules included in the evaluation are part of the A2
and A3 supertypes; these molecules are included because they have a distance to the

A2 and A3 molecules in the MA dataset less than 0.1.

Table 3.S10. Due to its dimensions, this table is not embedded in this
manuscript. Please refer to the online supplementary material to access it.






Chapter 4

Upgrading the NetMHCpan suite with
NNAlign MA

4.1 Summary

This chapter presents the paper “NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of
MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted
ligand data”, in which the NNAlign MA algorithm is deployed as the new engine of the (up to
August 2021) newest version of the NetMHCpan suite.

The aforementioned suite consists of the NetMHCpan and NetMHCIIpan softwares, each one
in charge of predicting binding to any MHC-I and MHC-II of known sequence, respectively. Both
methods are trained using a joint, extensive dataset of BA, ELL SA and EL. MA sequences under the
semi-supervised guidance of NNAlign_ MA. This results in an overall state-of-the-art performance,
but also the capacity of outperforming their competitors in the task of predicting eluted ligands
and epitopes. Thanks to this, the newest NetMHCpan suite represents a highly valuable asset for
rational epitope discovery.

After training and independent validation, NetMHCpan and NetMHCIIpan were uploaded to

the internet as free web-servers for the scientific community. The work of this chapter also describes
the available features these web interfaces have to facilitate user operation.
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Figure 4.1. Graphical abstract of chapter four. In the upper left panel, three
EL MA, EL SA and BA training datasets (consisting of peptides, MHC or cell line
restrictions, and target values) are shown; such datasets are then jointly fed to the
NNAlign _MA neural network framework in order to train it. The lower left panel
shows a job submission box for the NetMHCpan web-servers, consisting of a list of
query peptides and a selection of MHC restrictions to run the predictions against;
after completing the job, the servers report the corresponding output (bottom right

panel), where peptide-MHC pairs can be observed together with their normalized
binding scores.
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Abstract

Major histocompatibility complex (MHC) molecules are expressed on the cell sur-
face, where they present peptides to T cells, which gives them a key role in the devel-
opment of T-cell immune responses. MHC molecules come in two main variants: MHC
Class I (MHC-I) and MHC Class II (MHC-IT). MHC-I predominantly present peptides
derived from intracellular proteins, whereas MHC-II predominantly presents peptides
from extracellular proteins. In both cases, the binding between MHC and antigenic
peptides is the most selective step in the antigen presentation pathway. Therefore,
the prediction of peptide binding to MHC is a powerful utility to predict the possi-
ble specificity of a T-cell immune response. Commonly MHC binding prediction tools
are trained on binding affinity or mass spectrometryeluted ligands. Recent studies have
however demonstrated how the integration of both data types can boost predictive per-
formances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0,
two web servers created to predict binding between peptides and MHC-I and MHC-II,
respectively. Both methods exploit tailored machine learning strategies to integrate
different training data types, resulting in state-of-the-art performance and outperform-
ing their competitors. The servers are available at http://www.cbs.dtu.dk/services/
NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.

Introduction

The Major histocompatibility complex (MHC) is a fundamental cell surface protein of the cellular
immune system of vertebrates. The primary function of MHC is to bind to peptides (small protein
fragments) derived from the digestion of intracellular or extracellular proteins and display them
to the intercellular space. If T cells recognize and bind to a peptide-MHC complex, an immune
response can be triggered and the compromised cell will undergo lysis. Given this, the binding of
antigenic peptides to MHC molecules represents a necessary step for cellular immunity, and under-
standing the rules of this event has large and valuable potential in human health applications.

MHC comes in two main variants: MHC Class I (MHCI) and MHC Class 11 (MHC-1I). MHC-I
binds peptides from intracellular proteins after these undergo proteasomal degradation, and serves
as a control mechanism for antigenic variations in the self-peptidome repertoire. On the other hand,
the MHC-II binds peptides generated by protease-digestion of extracellular proteins; with this, both
MHC systems can exert control over foreign organisms via the presentation of non-self proteins to
T cells [1]. In view of this fact, important efforts have been committed to developing computational
methods capable of accurately predicting peptide binding to both MHC-I and MHC-II (reviewed
in [247]).

Different types of experimental data have been used to train these methods. According to the na-
ture of such training data, we can classify peptide-MHC binding predictors in three main categories.
The first category corresponds to predictors trained on binding affinity (BA) data [196, 248-250].
This type of data imposes a substantial limitation on prediction performances, since it only models
the single event of peptide-MHC binding, and neglects any other biological feature involved in the
process. The second category covers methods that are either trained with data retrieved from mass
spectrometry (MS) experiments, known as eluted ligands (EL) [53, 169, 170, 244, 245], or trained
integrating both BA and EL data [162,215, 220,249, 251]. This latter data type incorporates in-
formation not only related to the peptide-MHC binding event, but also information about prior
steps in the biological antigen presentation pathway processes. However, except for genetically
engineered cells, cellular MHC expression profile is very diverse due to the multiple MHC allelic
variants. Also, antibodies employed to purify peptide-MHC complexes in MS EL pipelines are
mostly pan- or locus-specific, leading to inherently poly-specific (or Multi Allelic, MA) data (i.e.,
the data contains peptides matching multiple cognate MHC binding motifs). Thus, a prior, user
biased peptide-MHC annotation criteria are, in general, needed in order to interpret such EL. MA
data, transform them to Single Allelic (EL SA, or single peptide-MHC annotations) and employ
them for the training of MHC-specific binding predictors [167].

The third and last category of algorithms seeks to resolve this limitation of the second type of
models, and incorporates, together with the training of a prediction algorithm, the capability of
annotating EL. MA sequences to single MHC restrictions [188,252]. One such method is termed
NNAlign MA [252], which during the training process can cluster EL sequences with ambiguous
cognate MHCs into single MHC specificities, using a strategy called pseudolabeling. This enables
not only the possibility of novel motif discovery, but also a considerable expansion of the training
set size, and therefore an overall improvement of the method’s predictive power.
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In this work, we deploy NNAlign_ MA to update NetMHCpan and NetMHCIIpan, augmenting
their training capabilities and also increasing their predictive performance. We do this by incor-
porating NNAlign_ MA to the core of the new models, allowing us to expand their training sets
greatly. Moving further, we perform a full independent epitope evaluation on both models and
show how the updated methods outperform other current state-of-the-art algorithms.

The NNAlign_ MA machine learning framework

The updated versions of NetMHCpan and NetMHCIIpan differ from their predecessors in two
critical aspects: the training data and the machine-learning modeling framework. The training
data have been vastly extended by accumulating MHC BA and EL data from the public domain.
In particular, EL data were extended to include MA data. The combined dataset used for training
of NetMHCpan4.1 consists of 13 245 212 data points covering 250 distinct MHC class I molecules,
and the combined dataset used for training of NetMHCIIpan-4.0 consists of 4 086 230 data points
covering a total of 116 distinct MHC class II molecules. For specific details on the training sets
and data partitioning refer to Supplementary Material. The machine learning framework was
updated from NNAlign to NNAlign MA to allow for effective handling of these MA data. In
short, the NNAlign framework is a singleallele framework permitting the integration of mixed data
types (BA and EL) in the model training, which allows information to be leveraged across the
different data types, resulting in a boosted predictive power [162,215]. NNAlign_ MA extends this
training framework to allow for the incorporation of EL. MA data. This is achieved by iteratively
annotating the best single-allele to the MA data during the model training, effectively deconvoluting
the MA binding motifs [252]. For specific details on the model hyper-parameters and cross-validation
training performance, please refer to Supplementary Material.

Web Interface
Submission Page

Input Data

Both servers accept two different types of input; FASTA and PEPTIDE. The input data can be
directly pasted into a submission box or uploaded from the user’s local disk. For FASTA input,
the user can specify the peptide length(s) to be included in the predictions (for class I, the length
range goes from 8 to 14 amino acids, default is 8-11; for class II only one length is admitted with
15 being the default value). Also, for Class II, one can specify if CONTEXT encoding [215] is to
be used. This context consists of amino acids spanning the source protein N and C terminal parts
of the ligand. The submission page includes examples of input data for all accepted formats and
provides buttons to upload sample data automatically.

MHC selection

Next, the servers provide a drop-down menu in order to select which MHC family and molecule(s)
to be used. NetMHCpan-4.1 covers more than 11 000 MHC molecules, spanning human (HLA-A,
HLA-B, HLA-C, HLA-E, HLA-G), mouse (H-2), cattle (BoLA), primates (Patr, Mamu, Gogo),
swine (SLA), equine (EQCA) and dog (DLA), and NetMHClIIpan-4.0 covers a total of close to 1000
human (HLA-DR, HLA-DQ, HLA-DP) and mouse (H-2) MHC alleles. For DQ and DP, the user
can make combinations of the covered alpha and beta protein chains. Furthermore, given the pan-
specific nature of both methods, predictions can be run for any MHC molecule of known sequence
by uploading a full-length MHC protein sequence in FASTA format.

Additional configuration

Both NetMHCpan methods inform if a sequence is a strong MHC binder (SB) or a weak MHC
binder (WB) based on a %Rank score. Briefly, %Rank is a transformation that normalizes pre-
diction scores across different MHC molecules and enables interspecific MHC binding prediction
comparisons. %Rank of a query sequence is computed by comparing its prediction score to a dis-
tribution of prediction scores for the MHC in question, estimated from a set of random natural
peptides. Given this, a %Rank value of 1% means that a queried sequence obtained a prediction
score that corresponds to the top 1% scores obtained from random natural peptides. The %Rank
values for detecting SBs and WBs can be modified by specifying the corresponding thresholds (by
default, %Rank < 0.5% and %Rank < 2% thresholds are considered for detecting SBs and WBs for
class I and %Rank < 2% and %Rank < 10%, for SBs and WBs for class II). In addition, an option
is available to only report sequences with a lower than a defined %Rank threshold, and for class II
to print only the strongest binding peptide overlapping a given binding core if FASTA was selected
as the input format.

Additionally, the user may opt to get the BA prediction scores of input sequences together with
the EL likelihood, and to sort the output according to the corresponding EL predicted values (from
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Aff(nM) BindLevel

ASQKRPSQR ASQKRPSQGR @ © © © © ASQKRPSQR seql 0.3038680 1632.63 <= WB
SQKRPSQRH SQKRPSQRH © © © © © SQKRPSQRH seql 0.1472270 . . . 5540.54 <= WB
QKRPSQRHG QKRPSQRHG © © © © © QKRPSQRHG seql 0.0063890 15.486 ©0.116401 32.313 14190.74
KRPSQRHGS KRPSQRHGS © © © © © KRPSQRHGS seql 0.0050730 17.438 0.108557 35.232 15447.71
RPSQRHGSK RPSQRHGSK © © © © © RPSQRHGSK seql 0.0560270 3.810 0.280215 6.920 2411.28
PSQRHGSKY PSQRHGSKY © © © 0 © PSQRHGSKY seql 0.0028600 22.985 0.085228 45.997 19883.19
SQRHGSKYL SQRHGSKYL © © © © © SQRHGSKYL seql 0.3023670 0.573 0.513405 0.975 193.42 <= WB
QRHGSKYLA QRHGSKYLA © © © © © QRHGSKYLA seql 0.0188000 8.324 0.166771 19.205 8228.45
RHGSKYLAT RHGSKYLAT © © © © © RHGSKYLAT seql 0.0038720 19.911 0.121768 30.487 13390.16
HGSKYLATA HGSKYLATA © ©0 © © © HGSKYLATA seql 0.0284610 6.304 0.325222 4.800 1481.70
Pos MHC Peptide  Of Core Core Rel Identity Score_EL %Rank_EL Exp_Bind Score BA Affinity(nM) %Rank BA BindLevel
8 DRB1_0434 QRHGSKYLATASTMD 6 YLATASTMD 0.860 seql 0.109816 21.94 NA 0.540059 144.96 9.47
9 DRB1_0434 RHGSKYLATASTMDH L YLATASTMD 0.953 seql 0.397085 4.68 NA 0.603262 73.16 3.77 <=WB

10 DRB1_0434 HGSKYLATASTMDHA 4 YLATASTMD 0.953 seql 0.542934 2.17 NA 0.639784 49.28 1.89 <=WB

11 DRB1_0434 GSKYLATASTMDHAR ki YLATASTMD 0.947 seql 0.661655 1.02 NA 0.666855 36.77 1.06 <=SB

12 DRB1 0434 SKYLATASTMDHARH 2 YLATASTMD 0.807 seql 0.464566 3.32 NA 0.663527 38.11 1.14 <=WB

13 DRB1_0434 KYLATASTMDHARHG 1 YLATASTMD 0.620 seql 0.156700 16.28 NA 0.625281 57.65 2.51

14 DRB1_0434 YLATASTMDHARHGF 5 STMDHARHG 0.447 seql 0.021961 51.57 NA 0.498187 228.04 15.59

15 DRB1_0434 LATASTMDHARHGFL 4 STMDHARHG 0.827 seql 0.016294 57.25 NA 0.397562 677.39 38.51

16 DRB1_ 0434 ATASTMDHARHGFLP = STMDHARHG 0.820 seql 0.025460 48.63 NA 0.364505 968.66 47.62

17 DRB1_0434 TASTMDHARHGFLPR 2 STMDHARHG 0.680 seql 0.010663 64.90 NA 0.363900 975.02 47.78

18 DRB1 0434 ASTMDHARHGFLPRH i MDHARHGFL 0.640 seql 0.007536 71.02 NA 0.354401 1080.56 50.46

Figure 4.2. Example outputs for the NetMHCpan-4.1 and

NetMHCIIpan-4.0 tools. (A) Example output for NetMHCpan-4.1, using as in-
put the web server’sFASTA sample data and the HLA-A*30:01 allele, with a peptide
length of nine and other options set to default. (B) Example output for NetMHCI-
Ipan4.0, using as input the web server’s FASTA sample data and the DRB1*04:34
allele, with all other options set to default. By default, prediction scores are for both
methods displayed in terms of a Score EL (the likelihood of a peptide being an MHC
ligand) column and a ‘%0Rank EL’ column (the EL percentile Rank score); if the user
selects to include BA predictions, such values are reported as well. The ‘BindLevel’
column displays the presence of Strong Binders (SB) or Weak Binders (WB) amongst
the queried peptides. ‘Peptide’ informs the list of peptides that have been interro-
gated against the selected MHC molecule(s) (exhibited in the ‘MHC’ column). The
‘Pos’ entry refers to the queried peptide’s position in the selected FASTA input, and
‘Core’ refers to such peptide’s identified binding core. ‘Identity’ is an automatically
generated ID that is assigned to the input. Other columns refer to specific properties
that depend on the MHC class being employed. For additional details on the inter-
pretation of the different columns of the output, refer to the ‘output format’ page
on both web servers homepages.

high to low). In addition, and for user convenience, the possibility to save the output as a *.XLS
file (readable to most spreadsheet software) is also provided.

Output Page

The output from both servers details the binding prediction values of the provided input sequence(s)
for the selected MHC molecule(s), together with additional information to guide the interpretation
of results. As seen in Figure 4.2, NetMHCpan and NetMHCIIpan output consist of several plain
text columns, which exhibit different pieces of information regarding the prediction outcome.

Evaluation and Examples

As independent validations, the models were benchmarked on sets of T-cell epitope data and for
class I also EL SA data. For MHC class I the epitope dataset was taken from Jurtz et. al [162]
combined with a comprehensive set of MHC multimer validated epitopes obtained from the IEDB
and for MHC class II from Reynisson et al. [253]. The EL SA data were obtained from [254]. In all
cases, the data were filtered to ensure no overlap with the training data (for further details on the
data sets refer to Supplementary Material). For the epitope data, the predictive performance was
estimated in terms of FRANK [162]. That is, for each epitope-HLA pair, binding to the HLA was
predicted for all overlapping peptides of the source protein using the eluted ligand likelihood predic-
tion score and the FRANK value was reported as the proportion of peptides with a prediction score
higher than that of the epitope. Using this measure, a value of 0 corresponds to a perfect prediction
(the known epitope is identified with the highest predicted binding value among all peptides found
within the source protein), while a value of 0.5 corresponds to a random prediction. Further, was
the corresponding AUC for each epitope reported, again assigning all overlapping peptides in the
source protein except the epitope as negatives. For further details on the CD8 epitope benchmark,
refer to Supplementary Table 4.57. For the EL SA dataset, negative decoy peptides were added
as described in the “Training and Test data” section of the Supplementary Material in ‘Materials
and Methods’ and the performance evaluated in terms of AUC, AUCO0.1 and PPV. Here, PPV was
estimated from the fraction of positive peptides within the top N predictions, where N is equal to
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Figure 4.3. Epitope benchmark results for the NetMHCpan-4.1 and
NetMHCIIpan-4.0 web servers. (A) Performance results for the CD8+ epitope
benchmark. Median FRANK values for the different methods are: NetMHCpan-4.1,
0.00220; NetMHCpan-4.0, 0.00230; MixMHCpred, 0.00264; MHCFlurry, 0.00383;
and MHCFlurry EL, 0.00386. (B) FRANK performance results for the CD4+ epi-
tope benchmark. The median FRANK for the different methods are: NetMHCIIpan-
4.0, 0.0351; NetMHCIIpan-3.2, 0.04825; MixMH2Cpred, 0.0513; MHCnuggets,
0.1219; and DeepSeqPanll, 0.1767. (C) PPV performance results for the MS
MHC class I eluted ligand benchmark. Median PPV values for the different meth-
ods are: NetMHCpan-4.1, 0.8291; NetMHCpan-4.0, 0.7940; MixMHCpred, 0.7911;
MHCFlurry, 0.7256; and MHCFlurry EL, 0.7144. P-values are shown as * P < 0.05,
** P < 10—6 and *** P < 10—9. All p-values were calculatated using a two-tailed
binomial test. The plotted boxes extend from the lower to upper quartile values of
the data (25th to 75th percentile), with a line at the median; whiskers extend from
the box to show the range of the data to the most extreme, non-outlier data points.

the total number of ligands times 0.95 (to account for potential MS contaminants). For additional
information on the ELL SA benchmark, refer to Supplementary Table 4.S8.

The results of these benchmarks are shown in Figure 4.3. Here, NetMHCpan-4.1 was compared
to NetMHCpan4.0 [162], MixMHCpred [188,211], MHCFlurry [249] and MHCFlurry EL (an unpub-
lished version of MHCFLurry trained with EL SA data, available at GitHub [255]). For this bench-
mark, because MixMHCpred cannot make predictions for peptides containing ‘X’ (wildcard amino
acid symbol), such peptides were removed from the benchmark dataset. NetMHCIIpan-4.0 was
compared in a similar manner to NetMHClIpan-3.2 [163], MixMHC2pred [245], MHCnuggets [256]
and DeepSeqPanlI [257].

With the exception of NetMHCpan-4.1 and NetMHCpan-4.0 when tested on the epitope bench-
mark, all three benchmarks confirmed a significantly superior performance of NetMHCpan-4.1 and
NetMHCIIpan-4.0 over all other methods included in the respective benchmarks. For the class I
epitope benchmark, NetMHCpan-4.1 and NetMHCpan-4.0 were found to share comparable pre-
dictive performance. For NetMHCpan-4.1 a consistent improvement was found for HLA-B and
HLA-C molecules for both the epitopes and ligand benchmarks when compared to NetMHCpan-
4.0 (consistent with the very large increased coverage of these loci by the EL dataset used for
the training of NetMHCpan-4.1). Note, also that in contrast to what was observed when evalu-
ating the performance on eluted ligand data [253], but in line with earlier works [215,253,258], a
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drop in the performance of NetMHCIIpan-4.0 was observed when including context information
(Supplementary Figure 4.S6).

Discussion

Over the last years, large amounts of novel MS-eluted MHC ligand data have become available,
enabling a highly enriched characterization of the MHC-presented ligandome. Here, we have bene-
fitted from this data, and combining it with an extensive set of MHC peptide-binding data available
in the IEDB, have developed updated versions of the NetMHCpan and NetMHCIIpan tools. Both
methods are capable of predicting a peptide’s likelihood of antigen presentation (and BA) to MHC
class T and class IT molecules. Both tools were trained using the NNAlign MA machine learning
framework, which enables the integration of MS ligand datasets obtained from cell lines expressing
multiple MHC alleles. The benchmarking of these methods against other available state-of-the-art
algorithms exhibited a significantly improved predictive power for the prediction of MHC ligands
and T-cell epitopes.

For both NetMHCpan-4.1 and NetMHCIIpan-4.0, the performance gain was found most pro-
nounced for prediction of MS identified MHC ligands. This in particular for class I, where the
NetMHCpan-4.1 method on the epitope benchmark was found to perform at par with its most
recent ancestor NetMHCpan-4.0. Many possible reasons for this limited impact on the performance
for epitope prediction exists, including biases in the epitope data currently available toward past
prediction methods and in-vitro experimental validation techniques, and biases in the MS EL data
not shared with T-cell epitopes. Future work will resolve the impact and importance of these bi-
ases, and allow us to access to what degree the improved power for prediction of MS MHC ligands
translates into an improved power also for prediction of T-cell epitopes.

Benchmark evaluation of the tools demonstrated an overall robust power of the NNAlign MA
machine learning framework to perform motif deconvolution across all MHC molecules included in
the training data. However, results also pointed to a lower performance for MHC molecules charac-
terized by limited ligand datasets such as HLA-C and HLA-DQ. While this low number of ligands
annotated to MHC from these two loci in part can be explained from their relative low protein ex-
pression, other causes could include differences in the HLA-loci specificities of the antibodies used
for immunoprecipitation (IP) when purifying MHC molecules prior to running MS experiments.
Future work may tell if working with antibodies with improved HLA-DQ specificities or using en-
gineered cell lines with, for instance, tagged HLA molecules as suggested by [53] can help resolve this.

Even though one of the main contributions to the improved performance of the prediction
methods proposed here (and other recently published methods) is the integration of MS derived EL
data, MS data itself contains an inherent bias imposed resulting in for instance overrepresentation
of ‘flyable’ [259] and neglecting cysteine-containing peptides [170]. These biases impose limitations
on the set of ligands detectable in MS and hence subsequent limitations on the learned binding
motifs. Given this, further complementary technological platforms for high throughput detection
of MHC peptide interactions might be warranted to complete our understanding of HLA antigen
presentation.

Both NetMHCpan and NetMHCIIpan have an easy to use user interface, allowing for simple
uploads of query sequence data, and a selection of MHC alleles to be interrogated for binding. As
the only current publicly available tools, both methods demonstrate a truly pan-specific capability,
allowing users to make predictions for all MHC molecules, including those not previously charac-
terized by binding data. The output from the tools is provided in simple text format with guided
information, aiding the user to select relevant epitope/MHC-ligand candidates.

Given the demonstrated high performances and their ease of use, we expect the updated web
servers to become relevant tools to guide future rational epitope discovery projects.
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Supplementary Material
Training and Test data

Both NetMHCpan-4.1 and NetMHCIIpan-4.0 were trained using data from multiple sources, ac-
cording to the type of MHC system being modeled. The assembled training sets for these sys-
tems consisted of two main data types [162]: Binding Affinity (BA, peptides derived from in-vitro
Peptide-MHC binding assays) and Eluted Ligands (EL, peptides derived from Mass Spectrometry
experiments). Additionally, EL data is composed of two subtypes: Single-Allele (SA, peptides as-
signed to single MHCs) and Multi-Allele (MA, peptides with multiple MHC options to be assigned).
For more information on these types of data, refer to Alvarez et al. [252].

BA data is, in essence, real-valued and transformed to fall in the [0,1] interval, as described
earlier [154]. On the other hand, EL data is binary, meaning that positive instances (both SA and
MA) were labeled with a target value of 1 and negatives with a target value of 0.

NetMHCpan-4.1

EL MA training data for this method were extracted from Alvarez et al [252], Bulik-Sullivan et
al. [244] and one in-house dataset. EL SA data were collected from Alvarez et al. [252], the
IEDB [225] and DeVette et al. [216]; BA data was gathered from Alvarez. et al [252] and the
IEDB [225]. An overview of the full training set is presented in Supplementary Table 4.S1.

SA (BA) SA (EL) MA (EL)
Positives Negatives #MHCs Positives Negatives #MHCs Positives Negatives #MHCs
54,402 155,691 170 218,962 3,813,877 142 446,53 8,395,021 112

Table 4.S1. NetMHCpan-4.1 training data overview. Columns correspond to
each type of training data employed in this work, for which the number of positive and
negative training instances is displayed, together with the total amount of unique
MHCs. BA: Binding Affinity; EL: Eluted Ligands; SA: Single Allele; MA: Multi
Allele. A threshold of 500 nM was used to define positive BA data points.

All peptides employed in the training were filtered to only include 8 to 14 amino acid long
peptides. All MHCs present in the BA subset were enriched with 100 random negative sequences
(target value of 0.01). On the other hand, positive peptides for each MHC present in the EL subset
were enriched, length-wise, with 5 times the amount of peptides of the most abundant peptide
length, as described earlier [225]. Random peptides were extracted from the UniProt database.

For independent performance evaluation, a test set of HLA restricted CD8+ epitopes was con-
structed. This data set consists of the epitope data set from Jurtz et al. [162] combined with
multimer validated epitopes obtained from the IEDB (downloaded 11-04-2020). The data set was
filtered to only contain epitopes of length 8-14, mapped to fully typed HLA molecules covered by
all methods included in the benchmark, and annotated source protein sequence. To remove poten-
tial noise in the data, all epitopes with a minimal Frank value across all methods included in the
benchmark greater than 0.1 were excluded. Further, additional SA EL datasets were downloaded
from [254]. Each dataset SA was enriched, length-wise, with negative decoy peptides of 5 times
the amount of ligands of the most abundant peptide length. Also, here were the datasets limited
to HLA molecules covered by all methods included in the benchmark. Finally, to ensure the inde-
pendent test set’s orthogonality, positive peptides overlapping with the training data were removed
from all test sets. The resulting benchmark datasets consisted of 1,660 epitopes restricted to 52
distinct MHC-I molecules, and 36 SA EL datasets covering a total 45,416 MS MHC eluted ligands.

NetMHCIIpan-4.0

Training data was gathered from Reynisson et. al. [253], which is composed of data from the
IEDB [225], 16 publically available datasets [53, 185,202, 226-232, 245, 260-264] and one in-house
data set. BA data was extracted from [163]. Out of the 17 EL datasets, 5 contained exclusively SA
data [226,230,231,260,263], 6 contained exclusively MA [227,229,232,245,261,262] and 6 contained
a mixture of MA and SA data ( [53, 185,202,228, 264] and the in-house dataset). Only cell lines
with more than 250 measured ligands were included in the final dataset. A summary of the data is
provided in Supplementary Table 4.52.

All data was filtered to only include peptides of length 13-21. Each EL (SA or MA) data set
was enriched with random negative peptides as described for NetMHCpan-4.0 by adding negative
decoy peptides 5 times the amount of the most represented positive length for each length.
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SA (BA) SA (EL) MA (EL)
Positives Negatives #MHCs Positives Negatives #MHCs Positives Negatives #MHCs
44,861 64,098 79 66,307 586,118 19 314,759 3,119,046 114

Table 4.S2. NetMHCIIpan-4.0 training data overview. Columns correspond
to each type of training data employed in this work, for which the number of positive
and negative training instances is displayed, together with the total amount of unique
MHCs. BA: Binding Affinity; EL: Eluted Ligands; SA: Single Allele; MA: Multi
Allele. A threshold of 500 nM was used to define positive BA data points.

An independent test set was generated from HLA restricted CD4+ epitopes from the IEDB.
MHC II Epitopes measured by 'ICS’, ’intracellular staining’, 'multimer/tetramer’ assays were ex-
tracted from a set of all T-cell assays from the IEDB (downloaded 27-11-2019) and filtered to
include only peptides of length 13-21, removing peptides with unconventional amino acids and post-
translationally modified peptides. To ensure orthogonality, all training set peptides that shared a
9 residue motif with this epitope set were removed. Further, and to remove potential noise in the
data, all epitopes with a minimal Frank value across all methods included in the benchmark greater
than 0.1 were excluded. The final CD4 epitope benchmark contained 917 epitopes restricted to 20
different MHC-II molecules.

All evaluation data sets are available from http://www.cbs.dtu.dk/services/NetMHCpan-4.1.

Neural Network Architectures and Hyperparameters

Both NetMHCpan-4.1 and NetMHCIIpan-4.0 were constructed upon the NNAlign MA [252] ma-
chine learning modeling framework. NNAlign MA is a neural network method based on NNAlign
[159], with the extended capability of deconvoluting MHC binding motifs of Mass Spectrometry
derived Immunopeptidomics datasets. Both models were trained with similar hyperparameters as
described previously [159,215,220,252] for datasets containing BA, SA EL and MA EL sequences
(for more details on the training data, refer to Supplementary Tables 4.S1 and 4.52). Essentially,
the neural network architecture for both models is a Feed Forward Network, with an input layer, a
single hidden layer and an output layer with two output neurons (one for binding affinity and other
for eluted ligand likelihood). Networks were trained using back-propagation with stochastic gradi-
ent descent and a fixed learning rate of 0.05. An ensemble of networks was created for each model
according to the amount of chosen hyperparameters (see below). When making predictions using
the ensembles, the average over the individual network predictions was used as the final prediction
score.

NetMHCpan-4.1

A total of 10 random seeds for weight initialization were used; the hidden layer was populated with
55 and 66 hidden neurons; and the training data was split into 5 partitions for cross-validation using
a Hobohm1-based common motif algorithm [156] with a motif length of 8 amino acids. This yielded
a final ensemble of 50 networks. All networks in the ensemble were trained using 200 iterations,
with a burn-in period of 20 iterations and early stopping.

NetMHCIIpan-4.0

An ensemble of models was trained in a 5-fold cross-validation manner using the common motif
algorithm [156] with motif length of 9 residues for splitting the data, with 20, 40 and 60 neurons
in the hidden layer, each with 10 seeds for weight initialization. The resulted in a final ensemble of
150 networks, each trained for 400 iterations, with a burn-in period of 20 iterations and no early
stopping.

Training Performance Evaluation

Beyond the performance evaluation on the independent T cell epitope benchmarks included in this
work, both methods were further evaluated from their cross-validated performance. This evaluation
included cross-validated AUC, AUCO0.1 (AUC integrated up to a False Positive Rate of 10%), PCC
(Pearson Correlation Coefficient), PPV (Positive Predictive Value) and several measures for motif
deconvolution consistency. The details of these different performance measures are described in
earlier publications [252,253].

NetMHCpan-4.1

AUC, AUCO.1, and PCC values for the BA (binding affinity) data, SA (single allele EL) data, and
MA (multi allele EL) data are included in Supplementary Tables 4.53, 4.S4, 4.S5, and 4.5S6. Here,
only MHC molecules/datasets characterized with at least 10 data points and at least 2 binders and
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2 non-binders are included. The performance on the SA and MA datasets was found to be overall
comparable (median AUC equal to 0.99 and 0.98 for the SA and MA datasets respectively). The
binding motif devolutions for the MA data are shown in Supplementary Figure 4.5S4. In this plot
motifs are represented as sequence logos generated using Seq2Logo [29], generated from the ligands
assigned to the MHC molecule in each cell line, excluding ligands with a presented percentile rank
score of 20% or higher. Only motifs for molecules characterized by at least 10 ligands are shown.
These figures demonstrated the ability of NetMHCpan to identify motifs with, in the vast major-
ity of cases, well-defined anchor positions for the MHC molecules in each dataset. Only datasets
and MHC molecules characterized by few deconvoluted ligands share more noisy motifs (exempli-
fied by, for instance, the HLA-C*07:01 motif in the Line.34 dataset, and HLA-C*06:02 motif in the
Line.41 dataset). Furthermore, a correlation analysis of the deconvoluted motifs for individual MHC
molecules characterized by at least 50 ligands and shared between multiple MA datasets revealed a
high motif consistency (see Supplementary Figure 4.S5). Here, the average/median correlation for
MHC molecules shared between 3 or more data sets was 0.89/0.90. Further, PPV values for each
motif deconvolution in the MA data were found to be generally high (and comparable to the PPV
values obtained from the SA data) with a median of 0.82 (the median for SA data was 0.89). PPV
was here calculated as the proportion of true-positive predictions within the top N predictions for
each allele in each data set, where N is the number of positive ligands deconvoluted to the given
MHC molecule with a predicted percentile rank score of 20% of less (20 rank is used to allow for
a small proportion of false positive MS ligands). These PPV values should be compared to the
expected value of a random predictor of 0.06 (estimated from the number of ligands divided by the
total number of peptides assigned to each MHC molecule). Moreover, we found that examples of
deconvolutions with reduced PPV values, in the vast majority of cases, correspond to HLA-C motifs
deconvoluted with very few ligand examples. By way of example, 70% of the MHC alleles with a
PPV of 0.5 or less correspond to HLA-C molecules, and 85% of these examples are characterized
by 100 or fewer ligands.

NetMHCIIpan-4.0

The cross-validated performance evaluation of NetMHCIIpan-4.0 -similar to that shown above for
NetMHCpan-4.1- is reported in [253]. In such work, conclusions supported that also for MHC II
can the NNAlign_ MA framework successfully deconvolute MA data, thus extending training data
substantially both in terms of MHC molecules and ligands. This was supported by comparing
cross-validation AUCs for models trained on MA data (and SA data) to models trained only on
SA data. Significant improvements were observed for the model trained on the extended datasets,
indicating successful integration of MA data. Further, and in line with earlier publications [215],
the work confirmed an improved performance for predicting MS ligands for models trained inte-
grating information about the ligand context from the source protein sequence. Quantification of
deconvolution consistency by motif correlation (as described for MHC I above) showed high consis-
tency scores for most MHC molecules across loci. HLA-DQ was however, found to be an exception
from this, with fewer molecules characterized by consistent and accurate binding motifs. HLA-DQ
molecules also performed generally worse than HLA-DR and HLA-DP in the PPV analyses, where
PPV was computed for each cell line MHC deconvolution after positive ligands had been filtered
to include only ligands with predicted percentile rank score less then 20. This thresholding was
applied to account for noise in EL data, leaving the average ligand/negative ratio as 0.119, which
is the exptexted PPV of a random predictor. Median PPV values for loci HLA-DR, DP, DQ and
Mouse H-2 were 0.824, 0.738, 0.558 and 0.865, respectively. For a conservative threshold of PPV
0.5 the predictor deconvoluted accurate motifs for 34 HLA-DR, 9 HLA-DP, 11 HLA-DQ and 3 H-3
molecules.
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Figure 4.S4. Full motif deconvolution for the Eluted Ligand (EL) Multi
Allele (MA) data used to train NetMHCpan-4.1. Each row corresponds
to a cell line present in the training data (114 in total; for more details, refer to
Supplementary Table 4.S5). Using cross-validation, ligands are assigned to the single
most likely MHC molecule expressed by a given cell line. Using this assignment,
binding motifs are then generated for each allele in each cell line. To remove potential
Mass-Spectrometry related contaminants, only ligands with a Rank score lower than
20 are included. The number of sequences associated to the corresponding MHC is
displayed on top of each logo. For more information regarding the performance of
this deconvolution, refer to Supplementary Table 4.S6.
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Figure 4.S5. Correlation matrices between deconvoluted MHC motifs
across all the Eluted Ligand (EL) Multi Allele (MA) cell lines employed
in the training of NetMHCpan-4.1 Each matrix corresponds to an MHC that is
shared between three or more cell lines and has more than 50 assigned sequences in
the motif deconvolution of the cell line data. To remove potential Mass-Spectrometry
related contaminants, only ligands with a Rank lower than 20 are included. For a
given MHC, each matrix entry displays the Pearson Correlation Coefficient (PCC)
between two motifs for the MHC obtained from the two cell line data sets. For a given
matrix, the corresponding MHC allele and the mean/median PCCs are displayed on

top.
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NetMHClIpan-4.0 NNAlign_MAC

Figure 4.S6. CD4 Epitope benchmark results for NetMHCIIpan-
4.0 and the corresponding version trained including ligand context
("NNAlign_ MAC”). For NetMHCIIpan-4.0, FRANK values are calculated as
described in the text. For NNAlign MAC, to account for the fact that epitopes are
measured from synthetic peptides (that might not reflect length preferences and sig-
natures of antigen processing), another FRANK scoring scheme was implemented,
similar to what has been described before [258]. Briefly, the prediction score for
each peptide was assigned from the sum of prediction scores of all 13-17-mers with a
binding core overlapping the original sequence. NetMHCIIpan-4.0 obtained a signif-
icantly lower median F-rank score compared to the context encoding model (2.732
and 3.004, respectively, p-value<0.005 in a binomial test, excluding ties).
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MHC # Peptides | # Positives |#
BOLA 10230 258 18]

BoLA-3:00101
BoLA-3:00201
BOLA-6:01301
BoLA-6:04101
BolAT2C
Eqca-100101
Gogo-B0101
H-2-Db
H2Dd
H2Kb
H-2Kd
H2KK
H2Ld
HLA-AOLOL
HLA-A02:01
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Table 4.S3. Cross-Validation training performance for the Binding Affin-
ity (BA) data used to trainNetMHCpan-4.1. "# Peptides” refers to the total
amount of peptides present for a given MHC ("MHC” column); ”"# Positives” and
"# Negatives” represent the quantity of positive and negative peptides (defined us-
ing a threshold of 500 nM), respectively; "AUC” = Area Under the ROC Curve;
?AUCO0.1” = Area Under the ROC Curve integrated up to a False Positive Rate of
10%; "PCC” = Pearson Correlation Coefficient.
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MHC # Peptides | # Positives |# i AUC AUCH PPV
DLA-8803401 1891 1575, 098972 0.90295] 089333
DLA-8850101 34285 1659 32631 0.97480) 0.87100] 0.81477]
DLA-8850801 409) 9| 0.78261]
H-2-0b 97739 4355 93384 099457 0.97316| 0.93449|
H-2-Dd
H2-0q
H-2:Kb
H2Kd
H2:KK
H2Kq
H2ld
HLA-AOL0L
HLA-AO1:03
HLA-A020L
HLA-A02:03
HLA-A02:04
HLA-A02:05
HLA-A02:07
HLA-AO214
HLA-A03:01
HLA-A03:02
HLA-ATLOL
HLA-A23:01
HLA-A24:02
HLA-A24:06
HLA-A2413
HLA-A26:01
HLA-A29:02
HLA-A30:01
HLA-A30:02
HLA-A30:03
HLA-A30:04
HLA-A31:01
HLA-A32:01
HLA-AGG:01
HLA-AGE:02
HLA-AGB0L
HLA-A68:02
HLA-AG9:01
HLA-B07:02
HLA-BOB01
HLABI3:01
HLA-B13:02
HLA-B14:02
HLA-B14:03
HLAB15:01
HLA-B15:02
HLA-B15:03
HLAB15:08
HLAB15:00
HLAB1510
HLABI511
HLABI513
HLAB1516
HLABI517
HLAB1518
HLA-B15:42
HLA-B18:01
HLAB18:03
HLA-B27:01

HLA-827:02
HLAB27:03
HLAB27:04
HLAB27:05
HLAB27:06
HLA-827:07
HLA-B27:08
HLAB27:09

HLAB27:10
HLA-B35:01

HLA-835:02
HLA-B35:03
HLAB3504
HLA-B35:06
HLAB35:08
HLA-B37:01
HLA-B38:01
HLA-B39:01
HLAB39:05
HLAB39.06
HLA-839:09
HLAB39:10
HLAB3924
HLA-B40:01
HLA-B40:02
HLA-B41:01
HLA-B41:02
HLAB41.03
HLA-B41:04
HLA-BA1.05
HLA-B41:06
HLA-BA201
HLA-B44:02
HLA-844:03
HLA-B44:05
HLA-B44:08
HLA-B44:00
HLA-B4427
HLA-844:28
HLA-B45:01
HLA-B46:01
HLA-B47:01
HLA-B49.01
HLA-B50:01
HLA-B50:02
HLA-B5101
HLAB51:02
HLAB51.08
HLA-852:01
HLA-B54:01
HLA-B55:01
HLA-B55:02
HLA-B56:01
HLA-857:01
HLA-B57:02
HLA-B57:03
HLA-BS8:01
HLA-B58:02
HLA-B73:01
HLACOL:02
HLAC02:02
HLAC03:03
HLA-C03:04
HLA-CO4:01
HLA-C05:01
HLA-C06:02
HLACO7:01
HLA-C07:02
HLA-CO7:04
HLA-C08:02
HLAC12:02
HLA-C12:03
HLAC12:04
HLA-C14:02
HLAC15:02
HLA-C16:01 42635] 2970]

HLA-C17:01 8585 602
Mamu-B*00801 17535 851‘

g
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Table 4.S4. Cross-Validation training performance for the Eluted Ligand
(EL) Single Allele (SA) data used to train NetMHCpan-4.1. ”# Peptides”
refers to the total amount of peptides present for a given MHC ("MHC?” column); ”#
Positives” and ”# Negatives” represent the quantity of positive and negative pep-
tides, respectively; "AUC” = Area Under the ROC Curve; "AUCO0.1” = Area Under
the ROC Curve integrated up to a False Positive Rate of 10%; "PPV” = Positive
Predictive Value. For details on how PPV is calculated refer to the manuscript text.
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Cell Line | # Pepti # iti # Negati AUC AUCO0.1
Al0 158826 10188 148638 0.97429 0.85328
All-All 141942 7403 134539 0.96556 0.87381
A12-A15 282968 11872 271096 0.97800 0.90023
Al4 195380 9509 185871 0.97862 0.89380
A15-A15 292756 12433 280323 0.97670 0.90066|
Al8 86723 6615 80108 0.98743| 0.93720
A19-A19 163032 9582 153450 0.96641 0.88588|
A20-A20 251551 11726 239825 0.97866 0.90984|
Apherl 129377 6145 123232 0.95430) 0.87363|
Apher6 41725 1962 39763 0.98065 0.90534|
Bcell 232902 12199 220703 0.98188 0.90757
CA46 64924 2324 62 0.98102 0.92858
CD165 138113 5364 132749 0.98107 0.90699
CM467 191850 7401 184449 0.98592 0.91757
EBL 277396 12915 264481 0.94843| 0.81612
Fibroblast 127318 5289 122029 0.97092 0.89343
GD149 217941 9756 208185 0.98240 0.93313
HCC1143 72274 2780 69494| 0.97922| 0.91435
HCC1937 107220 4976 102244 0.97807 0.92332
HCT116 97309 4174 93135 0.97774 0.91400
HEK293 91543 4972 86571 0.98562 0.92658|
HL-60 122202 6607 115595 0.99153| 0.94754
JY 63674 2868 60806 0.98250 0.93753
Line.1 6053 467 5586 0.99142 0.96166|
Line.10 25670 2140 23530 0.98575 0.93651
Line.11 61813 4720 57093 0.99287 0.94592
Line.12 29002 2199 26803 0.99190 0.94943
Line.13 7636 486 7150 0.97440 0.82162
Line.14 3080 208 2872 0.99402 0.94233]
Line.15 12640 921 11719 0.99081 0.94284|
Line.16 5860 369 5491 0.99187| 0.94570
Line.17 31746 1823 29923 0.96786 0.89025
Line.18 23223 1602 21621 0.98406 0.91819
Line.19 4191 318 3873 0.97294| 0.85376
Line.2 11078 896 10182 0.99231 0.95531
Line.20 47348 3680 43668 0.98550 0.91385
Line.21 19898 1394 18504 0.97378 0.86347
Line.22 38131 2372 35759 0.97245 0.85578
Line.23 18442 1366 17076 0.98815 0.92964|
Line.24 9393 570 8823 0.98745 0.93783
Line.25 47776 3338 44438 0.98654 0.91317
Line.26 5218 366 4852 0.97721 0.89726
Line.27 8596 575 8021 0.98524 0.90342
Line.28 11632 796 10836 0.98977| 0.93602
Line.29 45243 3268 41975 0.98478 0.88924|
Line.3 37308 2716 34592 0.98684 0.92107
Line.30 5345 571 4774] 0.94481| 0.74236)
Line.31 41110 2833 38277 0.98730 0.91935
Line.32 8961 908 8053 0.98512 0.89561
Line.33 19918 1282 18636 0.99099| 0.93769
Line.34 67373 4861 62512 0.98436 0.92253
Line.35 7803 482 7321 0.99263 0.94049
Line.36 60197 4517 55680 0.98758 0.93595
Line.37 14535 943 13592 0.98215 0.89406
Line.38 47064 3685 43379 0.98654 0.92198|
Line.39 38260 2714 35546 0.98324 0.90925
Line.4 24355 1684 22671 0.98356 0.91488
Line.40 45493 3164 42329 0.98821 0.93689
Line.41 25526 1691 23835 0.98081 0.88058|
Line.42 9104 662 8442 0.97949 0.91049
Line.43 1477 100 1377 0.98262 0.87314|
Line.44 25489 1909 23580 0.98998 0.94100
Line.45 35979 2647 33332 0.98700 0.91891
Line.46 54443 3489 50954 0.98778 0.91856
Line.47 3242 230 3012 0.98487 0.88466|
Line.48 44981 3138 41843 0.97845| 0.87460
Line.49 23169 1797 21372 0.97639 0.88152
Line.5 29156 2345 26811 0.98974 0.93441
Line.50 5209 315 4894 0.99154) 0.93473
Line.51 10097 750 9347 0.99001 0.95275
Line.52 3439 244 3195 0.98964 0.94830
Line.53 33054 2278 30776 0.98052 0.88637
Line.54 7859 651 7208 0.99203| 0.94208
Line.55 40559 2784 37775 0.97562 0.87127
Line.6 24908 1916 22992 0.99045 0.94381
Line.7 14151 1077 13074, 0.99026| 0.94481
Line.8 25449 1818 23631 0.99183 0.95109
Line.9 30369 2461 27908 0.99076 0.95432
LNT-229 188049 10311 177738 0.93425) 0.79206
MAVER-1 179017 7403 171614 0.99203 0.94751
MD155 112301 4374 107927 0.98060 0.93363]
Mel-12 92087 3758 88329 0.94475| 0.86319
Mel-15 416468 21813 394655 0.97028 0.86888|
Mel-16 275821 11980 263841 0.97476 0.90230
Mel-5 111537 4749 106788 0.90970 0.77826
Mel-624 51400 2375 49025 0.98790 0.91989
Mel-8 125171 6251 118920 0.97873 0.90506|
pat-AC2 33520 1369 32151 0.97590 0.89782
pat-C 52730 2983 49747 0.94198| 0.83667
pat-CELG 76094 3814 72280 0.90670 0.77183
pat-CP2 38669 1790 36879 0.98596 0.93735
pat-FL 77971 3629 74342 0.96953| 0.87735
pat) 45017 2552 42465 0.94136 0.83725
pat) PB3 37208 1937 35271 0.98286 0.90181
pat) T2 31038 1467 29571 0.98511 0.91892
pat-M 55715 2476 53239 0.99037 0.94648|
pat-MA 73523 3682 69841 0.93019 0.81837
pat-ML 58353 3139 55214 0.97329] 0.90406
pat-NS2 15841 636 15205 0.97946 0.91569
pat-NT 55388 2190 53198 0.96058 0.88904|
pat-PF1 91435 4646 86789 0.95472 0.87410
pat-R 51515 2372 49143 0.99101 0.94739
pat-RT 52339 2537 49802 0.90433 0.77757
patSR 60016 2632 57384 0.94528 0.87819
patST 28207 1256 26951 0.99216 0.94359
PD42 51227 2577 48650 0.97716 0.91132
RA957 243345 11037 232308 0.98843 0.92774|
RPMI8226 117644 4524 113120 0.96572 0.87106
SK-Mel-5 67772 3293 64479 0.97899 0.89732
T98G 225822 10011 215811 0.91652 0.76603|
THP-1 148285 5542 142743 0.97867| 091325
TILL 145613 5445 140168 0.98375 0.91860
TIL3 214746 8799 205947 0.99068 0.94019
u-87 252670 11585 241085 0.93549 0.80746

Table 4.S5. Cross-Validation training performance for the Eluted Ligand
(EL) Multi Allele (MA) data used to train NetMHCpan-4.1. ”# Pep-
tides” refers to the total amount of peptides present for a given cell line (”Cell Line”
column); "# Positives” and "# Negatives” represent the quantity of positive and
negative peptides, respectively; "AUC” = Area Under the ROC Curve; "AUCO0.1” =
Area Under the ROC Curve integrated up to a False Positive Rate of 10%;

91



92 CHAPTER 4. UPGRADING THE NETMHCPAN SUITE WITH NNALIGN_MA

Table 4.S6. Due to its dimensions, this table is not embedded in this
manuscript. Please refer to the online supplementary material to access it.

Table 4.S7. Due to its dimensions, this table is not embedded in this
manuscript. Please refer to the online supplementary material to access it.

Table 4.S8. Due to its dimensions, this table is not embedded in this
manuscript. Please refer to the online supplementary material to access it.



Chapter 5

Deep Learning for MHC motif
discovery: a primer

5.1 Introduction

Up to now, we have seen how different machine learning strategies can be employed to generate
peptide-MHC binding predictors. These strategies vary in their degree of complexity, which depends
mostly on the datatype at hand. In the case of SA datasets, the usage of NNAlign-2.0 has proven to
be quite effective in terms of capturing MHC receptor preferences and aligning their corresponding
peptide sequences. For multi-allelic datasets, NNAlign MA has also shown outstanding conditions
to extend this task to also include MA data sets. For both cases, the core FEFNN architecture behind
these algorithms is able to properly learn meaningful patterns from input data, “crystallizing” such
information in the network topology. Thanks to this, and after network training, it is possible to
generate MHC binding motifs by means of predicting a certain quantity of random peptides (usually
200.000) and then taking the top (often 0.1-1%) scoring peptides and constructing a sequence logo.
As an example, this well-established approach is used to generate the receptor preferences shown in
the NetMHCpan-4.1 and NetMHCIIpan-4.0 motif viewers [265,266], where the resolution of the lo-
gos depend, to the highest degree, on the quality of the inner representations learnt by the networks.

In a similar case, Fenoy et al. [267] went beyond the MHC domain, and employed the above
technique to generate kinase phosphorylation motif logos. Such motifs were assembled after con-
structing the NetPhosPan algorithm, a generic deep convolutional neural network for ligand-receptor
interaction predictions. Such a network was utilized to train a pan-specific peptide-kinase binding
predictor, in the general fashion NNAlign  MA was trained to predict pan-specific peptide-MHC
interactions. Architecture-wise, the main difference between NNAlign_ MA and NetPhosPan is the
implementation of 1-dimensional convolutional layers (CLs) in the latter, which are used to “scan”
input kinase-domains for potential binding sites. Briefly, encoded kinase sequences are fed to a
convolution module consisting of three parallel CLs of lengths (3, 5, 7) with 40 filters each, whose
global max-pooled outputs are concatenated to the encoded ligand sequences, and then fed to a
shallow FFNN with a single output neuron that returns the phosphorylation likelihood for submit-
ted ligand-kinase pairs.

Due to its deep learning nature, the above example represents an interesting case for analysis.
The rationale behind this is that convolutional layers have the capacity to slide over a given se-
quence (that may be temporal, semantic, etc.) and adaptively “pay attention” to different regions
across the length of the input series (in Fenoy et al., such regions corresponded to the kinase binding
domains). For this to happen, convolutional filter weights -characterized by matrices- become opti-
mized following the strategies described in the introduction of this manuscript. This optimization
dynamically molds and shapes the space of such filters, in the sense that their matrices capture
well-defined preferences for specific amino acid compositions at specific positions. Then, in the
presence of such an enriched representation space, a question may arise: could it be possible to
extract receptor motifs directly from this space? This would mean to, somehow, construct recep-
tor binding motif logos directly from the network weights rather than from the top predictions of
random peptides described previously.

To start exploring possible answers for the above question, a careful dissection and understand-
ing of the 1D convolution operator must be achieved first. From a deep learning perspective, 1D
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Figure 5.1. Toy example of a 1-dimensional convolution. Here, a filter W
with a kernel size k of 5 and 10 channels c¢ is being convolved with the encoding
X of the hypothetical sequence s = ADHBCJFEGACBID, of length | = 14, and
constructed via sampling of an alphabet of length c¢. W is slided from left to right
over the position axis, and for each possible sliding step, the convolution x (the sum
of all pairwise multiplications x) is computed and stored in a vector of maximum
length [ —k+1 =10 (in purple). Then, this convolution vector is added to the bias
T), resulting in the final output 6. In this example, the filter is shown located “on
top” of X at sliding position 3, with the convolution result stored in the position 3
of o.

convolutions are, essentially, sliding matrices that are applied to some input data matrix in order
to detect repeating patterns. Formally, we can define such operation as [268]:

G=WxX+Db (5.1)

where & is the output, W € R** is the weight matrix (or filter of kernel size k) of the convolu-
tion,  is the convolution operator, X € |* is the encoding of some input sequence s (i.e. with
BLOSUM) of length ! (generated from an alphabet A of length ¢), and b is the bias vector (refer
to Figure 5.1 for a graphical example). With this, the *x operator is defined to 1) compute the
pairwise multiplication of all elements in W and X at a given sliding position, 2) sum all these
multiplications (condensing everything into a single scalar), and 3) store this scalar in an output
vector at the same index of the current sliding position. As a result, the elements of ¢ will carry
information regarding the presence or absence of particular encoded characters a € A at specific
positions of s. Moreover, filters of different & values will scan s for specific subsequences of length
k, making 1D convolutions a fit candidate for multi-resolution motif recognition.

A rightful question, however, might be raised: why is that x is able to capture such information?
The short answer is that, in essence, the 1D convolution is a type of sliding dot product opera-
tor. This means that a filter matrix W convolving X computes, per sliding position, intermediate
column-wise dot products, which span an intermediate vector 4, whose position-wise sum yields the
final convolution output (see Figure 5.2 for a visual example). Since the dot product between two
vectors is a way of measuring the projection of one onto the other, such column-wise dot products
represent an explicit way of projecting elements of s onto a filter’s space. With this, @ can be
directly interpreted as the projection of sequence s onto a filter f (or, analogously, the projection
of X onto W), at a specific sliding position.

Since a W of size k can be placed at | — k + 1 different positions over X, a convolution will
span a total of [ —k + 1 possible output values. Among these values, there will be a maximum
one, and it will be associated to a specific sliding position p. This position is of great importance,
since it conveys the starting position of the subsequence of s which generated the greatest filter
response. With this last piece of information, we can now associate this subsequence to a filter’s peak
activation position p, and as a result recover the best projection vector ., whose i-th component
is defined as:

D

iyl = Wi ;0 Xipi (5.2)

with 0 < j < k—1 and e being the dot product. Notice how j indexes only column positions,
meaning that the operation is conducted across rows (in the same way as displayed in Figure 5.2).
If we now take into account that %, comes from a subsequence of s, we can remap the elements of
this vector into a “projection matrix” whose rows are indexed by alphabet elements a, and columns
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Figure 5.2. Computing a 1D convolution from a sliding dot product
viewpoint. Here, the same situation from Figure 5.1 is shown. The convolutional
filter W (in orange) is sitting on top of X (in black) at position 3, and extends itself
up to position 7. In a column-wise manner, dot products between W and X are
calculated and stored in an intermediate projection vector % (in brown). Then, by
summing the components of @ (green arrow) the convolution value for position 3
is obtained (purple block). Notice how there is a unique correspondence between
elements of 4, letters of the subsequence BCJFE, and the positions of such letters
in s. A side note: another possible approach to compute the same convolution value
is to do the dot product row-wise, and then summing (this, however, is not going to
be covered here).

by kernel positions. Moreover, considering an input space S (with multiple sequences s), summing
the projection matrices of each s will serve as a way of sampling a target convolution’s projection
image. We will refer to this sampled image simply as projection, and denote it with ¢ according
the following expression:

k—1
6= > I(sp,;=a)-i, (5.3)

seS 7=0

where a represents any symbol in alphabet A (in our case, the 20-letter amino acid alphabet), Spij
is the symbol found at position p+ j of s, and [ is an indicator function [269] of s (defined as 1
if s,05=a,0 otherwise) used for indexing amino acids in ¢ (refer to Figure 5.3 for an example
computation). Given the fact that a filter W will have a preference for specific amino acids at
certain positions, ¢ will capture the presence/absence of such a preference in S, and, furthermore,
give an estimate of its amplitude (by means of accumulation by summing for all s). Also, thanks to
the indexing provided by I, ¢ will have akin characteristics to a PSSM, and thus it will be possible
to treat it as a such (i.e. to generate a logo for visualization).

5.2 Materials and Methods

In the case of peptide-MHC interactions, the aforementioned strategy could be used to project
binding sequences s and extract possible binding motifs scattered across different positions in the
input space. The problem is that, in order for this to work, filter weights need to be tuned to specific
values for the detection of such motifs. Now, if we think of convolutional neural networks as a collec-
tion of convolutional layers, and convolutional layers as stacks of convolutional filters, we should be
able to assemble some kind of CNN architecture, optimize its filter weights using backpropagation,
and then compute their projections ¢ over some input peptide space S. To start exploring possible
experimental scenarios, we adapted the architecture of NetPhosPan to the peptide-MHC system
(Figure 5.4), using the Keras deep learning API [270]. Our approach consists of an allele-specific
ANN composed, essentially, of a convolution module with six parallel convolutional layers each of
kernel sizes 1, 2, 3, 5, 7, or 9 (in the NetPhosPhan model, kernels of length 3, 5, and 7 were used; we
here add a 9-kernel to account for 9-mer binding cores, and 1- and 2-kernels to scan for potentially
smaller patterns). The chosen activation function for all CLs was hyperbolic tangent (tanh), and
the padding was set to valid (this means that, after convolving a peptide of length [ with a filter
of length k, the resulting vector will not be zero-padded to the right, and thus will have [ —k + 1
positions). Each activated CL is then fed into a GlobalMaxPool() operation, which extracts the
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Figure 5.3. Example computation of ¢ for the toy scenario presented
in Figure 5.1. Here, Here, we will assume that subsequence BCJFE yielded a
maximum convolution value at position p = 3. For each overlapping column pairs
between W and X, the dot product is calculated and stored in the projection vector
ﬁp (in brown). Then, elements of ﬁp are summed into ¢, a matrix whose coordinates
are indexed by (letter, position) pairs, using an indicator function I as row mapper
(in this figure, an example for B at sg is shown). With this dot product accumulation,
the contribution of to the projection of S onto is leveraged, improving its resolution.

maximum value of the activated convolution output. Then, all pooled values become concatenated
into a single vector and fed to a single output neuron with sigmoid activation.

Since the proposed architecture has multiple convolutional filters f € F (with F being the
collection of all filters), we will refer to their projections as ¢ - Also, since a single output neuron

and no hidden layer is present in the proposed model (Figure 5.4), a weighted projection <£ ¢ of S
onto f can be computed as:

¢;f=wf'¢f (5.4)

where wy is the weight connecting filter f (after GlobalMaxPool()) to the output neuron (added to
account for the network’s assigned importance to ). Since in our experimental setup S corresponds
to a list of specific MHC-restricted peptides, qgf shall display a filter’s “viewpoint” of such MHC
binding preferences. Thanks to this, meaningful information regarding receptor motifs might be
extracted from such a unique perspective. Also, with the above expression, different q§ ¢ matrices may
be combined together to generate composite projections for any filter combination. For instance,
the full network projection can be calculated as the sum of all weighted projections ) f by

5.3 Results

Having defined the architecture and projection computation procedures, we next proceeded to the
training step. A total of six models were trained, accounting for HLA-A*02:01, HLA-A*01:01 and
HLA-B*08:01 (HLA-I); and HLA-DRB1*01:01, HLA-DRB1*03:01 and HLA-DRB1*11:04 (HLA-
II). Data for the class I system was extracted from the clustering output of NNAlign MA training,
whileas data for class II was obtained from the clustering output of NetMHCIIpan-4.0 training.
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Figure 5.4. Architectural representation of the proposed model. From top
to bottom, an input sequence s of length [ assembled from an alphabet of length
c is encoded and reshaped into a matrix X in order to fit the convolutional layers
input shape (c,!). For MHC-I and MHC-II, | = 14 and | = 21, respectively. Also,
BLOSUM encoding implies ¢ = 20. Six convolutional layers of kernel sizes 1, 2, 3,
5, 7 and 9 (with 5 filters each) are fed the input . CLs outputs are then fed to tanh
activation functions, and then into GlobalMaxPool() (GMP) blocks. The output of
each GMP are 5 scalars (each one associated to an upstream filter), which become
concatenated into a unique vector of length 30 (six kernels times five filters each)
and fed to the output neuron, whose activation function is a sigmoid.
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Figure 5.5. Cross-validation metrics for the HLA-B*08:01 model. From left
to right: Precision and Recall curves as a function of the decision threshold, Precision-
Recall curve and ROC curve. The black cross indicates the chosen operation point
for the model (in this case, the intersection of the precision and recall curves). The
AUC values for PRC and ROC are shown in bold.
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Figure 5.6. Known HLA-B*08:01 binding motif, extracted from the top
0.1% of 200.000 random peptide predictions.

Positive peptides were labeled with a target value of 1, while negative peptides with a target value
of 0. Negative enrichment was 5x the quantity of the most abundant positive length, for all lengths
as described earlier. Peptides were padded to a maximum length of 14 (in the case of MHC-I), and
a maximum length of 21 (in the case of MHC-II). The chosen encoding was BLOSUMS50, rescaled
by a factor of 5; the padding character “X” (wildcard amino acid) was encoded with a vector of
length 20 and values of -1. Optimization was done with gradient descent (learning rate of 0.05),
using mean squared error as loss function. Training was conducted for 200 epochs with an early
stopping of patience 40, following a 5-fold cross validation schema with homology reduction, and a
batch size of 64. A total quantity of 5 filters per convolutional kernel was used for all the models,
except HLA-DRB1*11:04, for which we used 10.

All models exhibited overall high performance values, with an average cross-validated ROC
AUC of 0.941 and PRC AUC of 0.793 (see Supplementary Figure 5.512 for performance details of
all models). In particular, for HLA-B*08:01, the reported CV metrics were as displayed in Figure
5.5. Having corroborated the model’s successful training, the goal now was to define an optimal
projection of the input space (HLA-B*08:01 peptides) onto the network’s filter space. For the ap-
proach to succeed, such projection should display similar characteristics to the known HLA-B*08:01
binding motif (shown in Figure 5.6), which will be our target PSSM.

To do this, four different cumulative projections alternatives were computed for all filters (Fig-
ure 5.7). From this figure it is apparent that not using w r at all (first panel from the left) results in
a highly divergent pattern with no clear similarities to the target logo (Figure 5.6), and an almost
monotonically decreasing information content is observed as a function of the position. Then, the
inclusion of the absolute value of wy (second panel) helps dilute such monotony, with the P5 anchor
slightly emerging as well. Things look much better when using the sign of w; as weight (third
panel), with a sharper P5, a first appearance of P3 and a correct positioning of the P9 anchor.
Finally, employing wy (fourth panel) yields the best result of all, with overall more informative and
crisp anchors, but also with correct, depleted enrichments at unimportant positions as well. Refer
to Supplementary Figure 5.513 for similar results for the remaining models.

With these results, we can observe how important a filter’s associated output weight is for the
architecture’s inner workings. If this were not the case, the summing of projections displayed in
Figure 5.7 would have shown similar characteristics for all four weighting cases. This suggests that,
to some degree, the network training assigns an importance level to each filter, and does this by
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Figure 5.7. Four different cumulative projections for the model trained
on HLA-B*08:01 data. From left to right: no weighting, weighting using the
absolute value of the output neuron weight, weighting using the sign of the output
neuron weight, and weighting using the output neuron weight.

increasing or decreasing the magnitude of its corresponding weight (higher valued filters become
more important, and vice versa). In addition to the magnitude, the sign seems to play a crucial
role as well. We believe this can be explained, initially, by looking at the chosen activation function
(hyperbolic tangent) outputs. Since the image of tanh lies in the [-1, 1] interval, the separation
between positive and negative classes might be done by squishing positive predictions towards 1
and negatives to -1, or by doing the exact opposite. This works because, essentially, the network
only needs to allocate different classes to different regions in its internal mapping to achieve sep-
aration. Then, to be consistent with the preferences dictated by the real MHC binding motif, the
learning process will enforce a negative or positive sign on each weight, and thus filter outputs will
become flipped accordingly when summed by the output neuron (refer to Figure 5.8 for an example).

Having stated the importance of wy, a side-to-side comparison between the logo of the raw input

data, the sum of all (13 and the logo obtained from top predictions is shown in Figure 5.9. Here, we
can observe a great resemblance between our cumulative weighted projection and the NetMHCpan-
4.1 logo. In addition, the logo generated from raw peptides displays more dissimilar properties in
comparison to the projection, hinting that, indeed, we are recovering valid information from this
technique. Also, it is important to clarify that, in contrast to Equation 1.14, any ¢ (and, in particu-
lar, the blend Zf gzgf) represents a pseudo-PSSM that encodes the network’s internal abstraction for
particular combinations of amino acids, and as such cannot be read as information content in the
classical way. In practical terms, this means that the y-axis of the logo representation of any pro-
jection combination will display dimensionless quantities (in contrast to NetMHCpan ones, which
will display information units). Because of this, logo comparisons will be made qualitatively, by
means of visual inspection (a proper objective quantification, such as Spearman’s rank correlation
is possible, but exceeds the scope of this chapter).

Next, we repeated the projection extraction procedure with the model trained on HLA-A*01:01
binding data, and computed the corresponding logo (Figure 5.10). As can be seen, the scenario
now looks different. First and foremost, the raw data logo for this allele exhibits a highly repeating
Tyrosine enrichment towards C-terminus. This is a direct consequence of the chosen padding, which
leaves the N-terminus at a fixed position, and as a result the P9 anchors across input peptides be-
come misaligned. Virtually, this is bad news, because such misalignments are now transferred to the
cumulative projection, which now displays large differences at P9 in comparison to the NetMHCpan
logo.

As kitschy as it sounds, a misalignment problem calls for an alignment solution, for which
we developed a small pipeline. First, the projection with highest amplitude value (or with more
“pseudo-information” content) is selected from the convolutional layer with the longest kernel size.
This will become the alignment template gzgt. Afterwards, all remaining projections (Z; are sorted
from higher to lower maximum positive amplitude within each subgroup of kernel size k. Starting
from the highest k£ value, a 2-dimensional cross-correlation is computed between ngt and the first
qg of the sorted list; as a result, an offset o -such that correlation is maximum- will be extracted.
Following, o is used to apply an offset correction to (;g, phasing it with the template. Next, offset-
corrected ¢ becomes summed to ¢;, updating it. Then, this whole correlation-correction schema
is repeated, but now using the next projection matrix from the sorted list. The process continues
until all elements of such list are consumed, which results in ¢, becoming the final alignment. The
output of applying this pipeline, for all trained models, is shown in Figure 5.11.

As seen in Figure 5.11, the final outcome of projecting S onto the filter space of trained models
varies drastically depending on the HLA molecule being analyzed. The easiest case turned out to be
HLA-B*08:01, whose projection looks good before alignment (just some minor errors are present,
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Figure 5.8. Role of the output weight w; in generating consistent internal
projections. On the top row, density estimations for GlobalMaxPool() outputs are
shown for the first filter (f = 0, first column) and last filter (f = 4, second column)
of the convolutional layer of kernel size k = 9 (the corresponding output weight is
shown on top of the plots). Densities corresponding to the positive and negative
training sets are plotted separately. Given that GMP receives the output of a tanh
activation function as input, such values will be bound between -1 and 1, guiding the
network to squish class separation on these extremes. Notice how such separation
can be obtained disregarding the tanh sign: for f = 0, positives are squished towards
1, whereas for f = 4, towards -1. As a direct consequence of this, projections ¢ for
both filters (middle row) will be x-axis mirrored (both will display similar anchors,
but on opposite sides). When applying the weighting qg = wy- ¢ (bottom row),
the mirroring becomes fixed, and now important anchors point towards the same
direction (amplitudes become corrected too). With this, the summation of ¢ ; over
all f € F will yield a more sound PSSM, as seen on the rightmost logo of Figure 5.7.
Note: density plots display values outside the [-1,1] interval. This is an artifact of
the visualization; these do not exist in reality.
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Figure 5.9. HLA-B*08:01 logo comparison between raw input data (left),
summation of all weighted projections (middle) and NetMHCpan-4.1 top
0.1% predictions (right). Raw data logo has 14 positions in total because all
input peptides are padded to such length.
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Figure 5.10. HLA-A*01:01 logo comparison between raw input data (left),
summation of all weighted projections (middle) and NetMHCpan-4.1 top
0.1% predictions (right). Raw data logo has 14 positions in total because all
input peptides are padded to such length.
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Figure 5.11. Comparison between logos for raw input data (first col-
umn), alignment template (second column), weighted projection accumu-
lation (third column), aligned weighted projection accumulation (fourth
column), and known NetMHCpan logo (fifth column), for all employed

models (one per row).
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i.e. K/R enrichment at P2, or P9 anchor slightly appearing at P7 and P8). When aligned, these
errors dissipate, but on the other hand, R from P3 is lost. For HLA-A*01:01, the existence of
misalignments in the algorithm’s solution was evident, and as can be observed, P9 “ghost anchors”
become unified after aligning. One thing to observe is that the sum of aligned projections starts
from NetMHCpan logo’s P2, but positional relationships are conserved. The scenario for HLA-
A*02:01 is an interesting one, in the sense that there is almost no difference when aligning (besides
amplitude gain), and moreover the malposition of P9 could not be rescued. Moving to the MHC-IT
system, both pre- and post-alignment projection logos for HLA-DRB1*01:01 look rather similar,
and no qualitative gain can be seen. However, it is noticeable how both projections start two
positions to the left of NetMHCIIpan’s logo P1, leaving the final motif two positions short towards
C-terminus. We believe this happens because of a consistent Proline (P) signal present upstreams
of P1, which is in concordance to previously characterized MHC-II antigen processing signals [215].
Moving on, HLA-DRB1*03:01 exhibited a clear optimization thanks to the alignment pipeline,
that helped unify scattered P1, P4 and P6 anchors. Also, as observed in the previous molecule,
the two position shift is present. The last allele, HLA-DRB1*11:04, benefitted as well from the
alignment, resulting in sharp P1 and P6 anchors. On the downside, less important anchors such
as P4 and P9 became “diluted”, since these are visibly present in the aligned ¢, but have small
magnitudes. Additionally, and in contrast to HLA-DRB1*03:01 and HLA-DRB1*11:04, we do not
observe the two position shift, and all anchors are in phase with the NetMHCIIpan logo. Finally,
it is important to state that, independently of individual model gains, losses, and caveats, ¢ always
represents a more accurate binding motif estimation when compared to the raw input data itself.
For a more comprehensive display on how alignments were generated from summing offset-corrected
projections, refer to Supplementary Figures 5.514, 5.515, 5.516, 5.517, 5.518 and 5.519.

5.4 Discussion

With all the results exposed above, it becomes evident that neural networks generate complex
internal representations of the outer world we present to them. Given the sparse nature of this
abstraction space (where information is stored in weights and connections), looking under the hood
to understand such a language is not trivial. In this chapter, we have made a humble attempt to
do so, focusing on the particular case of 1-dimensional convolutional neural networks.

Since this type of deep learning approach is an ideal candidate for the analysis of peptide-MHC
binding interaction data, we assembled a primordial architecture to study the problem in a con-
trolled setting. We did this by utilizing the convolution operator as a way of projecting the input
set onto the weight space of the architecture’s convolutional filters. Such an approach enabled
us to construct and then visualize inner network constructs using the well known sequence logo
representations. In total, we trained six different peptide-MHC binding predictions models. Half
of these models were dedicated to HLA-I, a relatively simpler molecule that served as the first
benchmark for our projection pipeline. Results looked promising, since calculated projections had
acceptable resemblances to known experimental binding motifs. However, an offset correction step
was introduced in order to solve a clear misalignment issue present in some anchors. Such correction
was indeed a success, but also a much-needed intervention to make projections for HLA-IT (a more
complex system) look correctly aligned with experimental data as well.

Thanks to the above, we believe such novel ways of looking at 1D convolutions might serve to
expand the current understanding on how these ANNs construct, combine and exploit inner repre-
sentations of input data. We consider the work presented here as a first approach on dealing with
such conundrum, leaving a lot of room for improvement and scaling. For instance, and from what
can be observed in Supplementary Figures 5.514, 5.515, 5.516, 5.517, 5.518 and 5.519., plenty of in-
dividual projections seem to not display informative content (no clear patterns can be distinguished,
and/or amplitude is low), hinting that not all filters become optimized equally, and opening the
question of why this happens (is this a real issue, or just how the network normally behaves?).
This could be further explored using regularization techniques (L.1/L2 penalties, dropout layers,
etc.) and measuring how these impact in the projection shapes. Since output weights are of central
importance to this approach, and such weights properties depend directly on how filter activations
are calculated, another interesting question is the role of such activation functions in generating pro-
jections. In our case, hyperbolic tangent was employed, and this forced output weights to become
positive or negative in order to flip filter responses to render them useful. The usage of different
activations may impact this behaviour, and even reveal different network strategies for organizing
information. On another take, projection motifs are currently constructed capping the position axis
to the max value of k, imposing a limitation to motif discovery, since longer motis may be present in
our data. Enabling the offset correction step to align similar projections at any position shall help
creating longer representations, overcoming the limitations imposed by fixed convolutional kernel
sizes.
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Finally, expanding the current architecture to a pan-specific framework is also of great rele-
vance. Doing so, a single convolutional filter will encounter the challenge of having to capture
information from multiple MHC molecules. With this, filter-MHC exclusivity should be lost, and
thus new patterns of abstraction might emerge. Directly using the current architecture to train a
pan-specific model may, however, incur in performance problems. This, mainly, due to the fact that
a single output neuron is currently employed, coming up short in the task of dealing with multiple
MHC information. So, expanding the architecture to leverage multiple output neurons (or even
more, multiple hidden layers) seems a good deed. When doing this, however, one shall consider an
adaptation of the weighting schema for gz; computation, since at the moment it only contemplates
a unique output neuron.

In conclusion, the horizon of such deep learning approaches appears quite vast, but seems
promising and worth exploring.
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Figure 5.S12. Cross-validation metrics for all trained models (one per
row). From left to right columns: Precision and Recall curves as a function of the
decision threshold, Precision-Recall curve and ROC curve. The black cross indicates
the chosen operation point for the model (in this case, the intersection of the precision
and recall curves). The AUC values for PRC and ROC are shown in bold.
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weight, weighting using the sign of the output neuron weight, and weighting using
the output neuron weight.
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Figure 5.S14. Full projection panel for the HLA-A*01:01 molecule. On
top, the aligned and not aligned accumulated weighted projections are shown in the
left and in the right, respectively. Below, all the individual weighted projections ¢ for
all filters (indexed by columns) in each convolutional layer of kernel size k (indexed
by rows) are shown. On top of each projection, the value of w + (weight connecting
the corresponding filter to the output neuron) is shown. Next to this, and in between
parentheses, the contribution percentage of w to the convolutional layer and to the
full network are displayed. Below, the offset correction value o is exhibited; next
to it, in between parentheses, the order in which the projection was added to the
cumulative projection is shown.
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Figure 5.S15. Full projection panel for the HLA-A*02:01 molecule. On
top, the aligned and not aligned accumulated weighted projections are shown in the
left and in the right, respectively. Below, all the individual weighted projections ¢ for
all filters (indexed by columns) in each convolutional layer of kernel size k (indexed
by rows) are shown. On top of each projection, the value of wy (weight connecting
the corresponding filter to the output neuron) is shown. Next to this, and in between
parentheses, the contribution percentage of w to the convolutional layer and to the
full network are displayed. Below, the offset correction value o is exhibited; next
to it, in between parentheses, the order in which the projection was added to the
cumulative projection is shown.
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Figure 5.S16. Full projection panel for the HLA-B*08:01 molecule. On
top, the aligned and not aligned accumulated weighted projections are shown in the
left and in the right, respectively. Below, all the individual weighted projections ¢ for
all filters (indexed by columns) in each convolutional layer of kernel size k (indexed
by rows) are shown. On top of each projection, the value of wy (weight connecting
the corresponding filter to the output neuron) is shown. Next to this, and in between
parentheses, the contribution percentage of w to the convolutional layer and to the
full network are displayed. Below, the offset correction value o is exhibited; next
to it, in between parentheses, the order in which the projection was added to the
cumulative projection is shown.
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Figure 5.S17. Full projection panel for the HLA-DRB1*01:01 molecule.
On top, the aligned and not aligned accumulated weighted projections are shown in
the left and in the right, respectively. Below, all the individual weighted projections
¢ for all filters (indexed by columns) in each convolutional layer of kernel size k
(indexed by rows) are shown. On top of each projection, the value of wy (weight
connecting the corresponding filter to the output neuron) is shown. Next to this,
and in between parentheses, the contribution percentage of wy to the convolutional
layer and to the full network are displayed. Below, the offset correction value o is
exhibited; next to it, in between parentheses, the order in which the projection was
added to the cumulative projection is shown.
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Figure 5.S18. Full projection panel for the HLA-DRB1*03:01 molecule.
On top, the aligned and not aligned accumulated weighted projections are shown in
the left and in the right, respectively. Below, all the individual weighted projections
¢ for all filters (indexed by columns) in each convolutional layer of kernel size k
(indexed by rows) are shown. On top of each projection, the value of wy (weight
connecting the corresponding filter to the output neuron) is shown. Next to this,
and in between parentheses, the contribution percentage of wy to the convolutional
layer and to the full network are displayed. Below, the offset correction value o is
exhibited; next to it, in between parentheses, the order in which the projection was
added to the cumulative projection is shown.
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Figure 5.S19. Full projection panel for the HLA-DRB1*11:04 molecule.
On top, the aligned and not aligned accumulated weighted projections are shown in
the left and in the right, respectively. Below, all the individual weighted projections
¢ for all filters (indexed by columns) in each convolutional layer of kernel size k
(indexed by rows) are shown. On top of each projection, the value of wy (weight
connecting the corresponding filter to the output neuron) is shown. Next to this,
and in between parentheses, the contribution percentage of w ¢ to the convolutional
layer and to the full network are displayed. Below, the offset correction value o is
exhibited; next to it, in between parentheses, the order in which the projection was
added to the cumulative projection is shown.






Chapter 6

Epilogue

From a systems biology standpoint, the immune system is a heavily interconnected network of effec-
tors, whose individual actions continuously reshape the topology of the network itself. Additionally,
on top of this layer of emergent complexity, evolution has favored graph divergence across individ-
uals, meaning that no immune system is identical to others. Taken together, these characteristics
make navigating the immune state of an organism a labyrinthine -and maybe impracticable- task.
Nonetheless, such limitations may be leveraged to push the limits of what can be done, with what
is available.

Presently, immunopeptidomic techniques have enabled the sampling of a cell’s immune state in
the form of an immunopeptidome, a more amicable and navigable object. With this, all the work
presented in this manuscript was conducted with the drive of pushing forward current capabilities
of exploiting such immunopeptidomes, from three angles alike: facilitate the deconvolution of MHC
preferences, improve epitope and ligand benchmarks by means of assembling better peptide-MHC
binding predictors, and provide such algorithms for the scientific community to use.

With the above in mind, the second chapter of this work dives into 1) deconvoluting immunopep-
tidomes and 2) training models to predict peptide-MHC binding, as consecutive steps. To do this, we
employed data for both the HLA-T and HLA-II systems, from genetically engineered (mono-allelic)
and wild type (multi-allelic) cell lines. Considering that binding specificities of MHC molecules are
historically defined using data from binding affinity experiments, this chapter provides a first step
into what utilizing EL. SA and EL MA datasets looks like. For the mono-allelic specimens (only
one MHC expressed), the main challenge was to filter spurious sequences (related to MS artifacts),
and then generate the corresponding MHC binding motifs from such variable length peptide inputs.
For this, GibbsCluster-2.0 was employed, yielding motif logos with increased information content
when such filtering was activated (trash cluster enabled). Moreover, for several alleles, sequences
found in the trash cluster exhibited terminal lysine/arginine preferences at C-terminus, pointing
towards a possible source of wetlab-related, trypsin digestion contamination. The effectiveness of
the trash cluster was also explored by means of predicting such spurious sequences against their
corresponding MHC restrictions (using the NetMHCpan suite available at the time), where predic-
tions scored low values in comparison to true ligands. In the case of MA cell lines (where a proper
deconvolution is needed), GibbsCluster-2.0 also exhibited overall good results, with properly formed
deconvoluted motifs. Moreover, in the case of the DR15-DR51 cell line (Class II), only by enabling
trash cluster filtering the algorithm correctly converged, showing the importance of not overlooking
the effect of noise in our input data. In particular, for the deconvoluted HLA-DRB1*15:01 allele,
the GibbsCluster logo exhibited closer similarities to known experimental epitopes than BA-derived
motifs. These results hint that MS-derived data has, indeed, the potential of complementing our
understanding of peptide properties required for MHC antigen presentation. On the other hand,
GibbsCluster failed at fully clustering the HLAs expressed by the HCC1143 cell line (Class I), miss-
ing the HLA-C*04:01 allele. Since HLA-C molecules have lower expression values in comparison to
their HLA-A and HLA-B counterparts, this imposes a major limitation that should be addressed
in future versions of the algorithm. Finally, after GibbsCluster filtering and deconvolution, HLA-I
and HLA-IT multi-allelic cell lines were employed as training sets to generate peptide-MHC bind-
ing predictors, using the NNAlign-2.0 framework. With this, not only the trained models exhibited
good cross-validated consistencies (AUC > 0.95 for all six predictors), but binding motifs for decon-
voluted alleles and their corresponding peptide length distributions were also successfully recovered
from such models.
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On the gray side of things, and despite the overall good results shown in chapter 2, all the com-
parative analyses between deconvoluted motifs (our algorithmic output) and already characterized
motifs (ground truth) were done qualitatively by means of visual inspection. This occurs, in princi-
ple, because GibbsCluster lacks the capability of automatically annotating the corresponding MHC
restrictions to its output, leaving the user with the task of recognizing which MHC corresponds
to a given binding preference logo. This limitation is highly detrimental for alleles with unknown
binding motifs, and/or projects with large data yields that cannot be processed by humans in a
feasible time or without committing several mistakes. Moreover, since a machine learning algorithm
cannot be better than the data it is trained on, using GibbsCluster’s output to train NNAlign may
result, undoubtedly, in subpar predictive models. Because of this, such shortcomings significantly
truncate the true potential of MHC motif discovery pipelines.

To circumvent the aforementioned limitations, in the third chapter of this thesis we introduced
NNAlign_ MA, an augmented version of NNAlign capable of automatically deconvoluting and anno-
tating immunopeptidomes of known MHC typing, while also training a pan-specific model to predict
peptide-MHC interactions. This was achieved by means of developing a custom training loop over a
two output neuron (accounting for BA and EL data) FENN architecture. NNAlign MA was trained
on multi-allelic cell lines from the HLA-I, BoLA (bovine MHC-I) and HLA-II systems, and tested
on independent ligands and epitopes, in diverse scenarios. In the HLA-I case, all EL. MA datasets
were completely deconvoluted and annotated to all their HLA restrictions, exhibiting overall good
correlation values to known SA motifs, for alleles both characterized and not characterized by SA
EL training data. This latter observation shows how co-occurrence and exclusion principle, both
exploited by the algorithm, can indeed work together to fish out binding motifs and annotations
from MA EL data. This strategy, however, succeeded partially for HLAs present only on single MA
EL datasets and for alleles with low quantity of associated peptides (in both cases, binding motifs
displayed less informative enrichments). Furthermore, motif consistency for alleles shared between
multiple cell lines was also measured, yielding on average PCC values of 0.9. This depicts that, in
addition to good correlation with experimental motifs, the method manifests good internal consis-
tency across reported clustering solutions. Clusters of shared alleles also displayed an average PPV
of 0.75, meaning a threefold increased likelihood of making a true positive call than a false positive
one. With this, NNAlign MA demonstrates solid conditions for complete, consistent and accurate
immunopeptidome deconvolution. Moving on, and to measure the impact of training using EL
MA data, performance comparisons were made against a model trained solely on SA data. Here,
NNAlign_MA displayed significantly higher performance values when evaluated on EL MA and
BA sequences, and a comparable performance on EL. SA data. Independent HLA-I epitopes were
also tested, with results consistently in favor of NNAlign_MA; in particular, FRANK values were
substantially better for epitopes whose alleles were characterized only by EL MA data, confirming
again the power of MA data deconvolution. Epitope benchmark was also done with external pre-
dictors, displaying small but significant improvements against MHCFlurry_ EL and MixMHCpred,
and comparable performances against NetMHCpan-4.0 and MHCFlurry. As a final acid test on the
class I dataset, single-allelic peptides for specific HLA-I supertypes were removed from the training
data, forcing the algorithm to leverage these absent HLA-I motifs purely from multi-allelic data.
Results were encouraging, displaying average AUCO0.1 values of 0.85 in cross-validation, and one
order of magnitude median predictive boost for epitope predictions. After this extensive bench-
mark on HLA-I data, we moved onto cattle immunity, which represents a more challenging task
(data is less abundant, and MHC expression has higher variability). BoLA-I datasets were then
employed to train NNAlign MA, and showed overall good deconvolution shapes. Moreover (and
thanks to the score rescaling applied during training) binding motifs reported by the algorithm
helped discover a wet lab MHC annotation mistake of a previously published work [167], which was
afterwards corrected. A similar case happened with the BoLLA-1*00901 molecule, which exhibited a
considerably different binding preference in comparison to previous findings. After observing this,
collaborators carried out in-vitro binding affinity assays to characterize this molecule, and found a
very high similarity with the NNAlign_ MA reported motif. These last two results demonstrate,
to a high degree, the framework’s real capacity of challenging the literature and pushing forward
MHC motif discovery. Afterwards, we moved onto evaluating the trained model using a set of
experimentally validated BoL A restricted CD8 epitopes, which showed overall comparable perfor-
mance to NetBoLApan, while also boosting predictive power for BoLA-1*00901 and BoLLA-3:01701
epitopes. Having finished with bovine samples, benchmarking the HLA-II system was ensued. For
this, we repeated similar analyses to the HLA-I case, with comparable achieved results. Sharp de-
convoluted motifs were found, but, as for the class I benchmark, accuracy of identified motifs, also
here, depended on the number of ligands assigned to a given HLA. This observation is crucial, as
it underlines the dependence of NNAlign MA on the quality and quantity of input data. Moving
on, SA+MA and SA-only models exhibited excellent MA data cross-validation performances, with
the main difference being the model trained only on SA modestly (but not significantly) outper-
forming NNAlign MA when predicting SA sequences. However, this turned out not to be a major
limitation, since CD4 epitope predictions were significantly better for NNAlign MA in comparison
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to the SA model and NetMHClIIpan-3.2.

Considering all the above reported results and observations, we concluded that the NNAlign. MA
framework exhibited state-of-the-art performances for MHC motif deconvolution, annotation and
epitope predictions. Having culminated the design, train and validation cycles of such a frame-
work, we moved onto deployment and serving. The results of this stage were reported in the fourth
chapter of this manuscript, where NNAlign  MA was utilized as training engine for the new ver-
sions of NetMHCpan (promoted to 4.1) and NetMHCIIpan (promoted to 4.0), two well established
peptide-MHC binding predictors. In the case of MHC-I, and in comparison to the NNAlign MA
benchmark, absolute quantity of training data was extended in 25% (approximately 13.1 million
data points), accounting for an allelic coverage expansion of 53%, 78% and 34% for BA, EL SA
and EL MA datasets, respectively. NetMHCpan-4.1 was benchmarked against its former version
and rival softwares, using independent CD8 epitopes and SA eluted ligands. All these benchmarks
resulted in significantly superior performance of NetMHCpan-4.1 versus other methods, with the
exception of NetMHCpan-4.0, which resulted in a comparable performance when tested on epi-
topes. Despite this, consistent improvement was found for HLA-B and HLA-C restricted epitopes.
Compared to the NNAlign_ MA publication, the sheer amount of training data for MHC-II was
increased by 526% (approximately 4.2 million data points), representing an augmented allelic cov-
erage of 34%, 137% and 612% for BA, EL SA and EL MA datasets, respectively. NetMHCIIpan-4.0
was tested on CD4 epitopes and benchmarked against its previous version and other competing al-
gorithms, exhibiting significant performance improvements in all cases. After this benchmarking,
both NetMHCpan-4.1 and NetMHCIIpan-4.0 were released to the public in the form of web-servers,
whose main characteristics and usage are also described throughout the chapter.

Since such release in May 2020, a lot has happened in the world surrounding SARS-CoV-2.
In particular, scientific research played (and still plays) a key role in unpuzzling the novel corona-
virus and pushing forward new treatments. Regarding this, in the early stages of the pandemic,
the recently updated NetMHCpan suite helped assessing if T cell immunity was indeed achievable
in individuals with asymptomatic or mild cases [271], and if a successful vaccine formulation was
possible for circulating variants of that moment [272], by means of prioritizing candidate epitopes
for tetramer formulation and generating protein hotspot maps, respectively. It followed a proposal
for in-silico optimized MHC-I and MHC-II vaccines, with coverages of more than 93% of the world
population, where the suite took part in the peptide ranking algorithm core [273]. In the same
line of action, a particular case of vaccine for the Colombian population was also formulated [274].
NetMHCpan was also involved in some interesting descriptive studies, such as the association be-
tween disease severity and HLA-I genotypes [275] (employed to generate a risk score metric), the
assessment of CD8+ T cell immune evasion [276] (used to analyze differences in MHC presenta-
tion of ancestral vs. mutated epitopes), and showing how previously exposed individuals develop
enhanced immunity against B.1.1.7 and B.1.351 variants with a single BNT162b2 vaccine dose, in
comparison to those who were not previously exposed [277] (prioritized HLA-II targets in prelimi-
nary studies). Useful online tools have also been created on top of NetMHCpan, such as “neoCOVID
Explorer” [278] (accessible through [279]) which enables exploration of predicted Covid-19 epitope
landscape for the HLA proteins and prioritization of peptide-MHC pairs for specific populations,
and “SARS-CoV-2 T cell epitopes” [280] (accessible through [281]) a curated database of experi-
mentally validated SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of recovered
patients. An interesting observation on this database is that, from the total 1209 epitopes included,
1017 were pre-selected using NetMHCpan. As good as this may sound for us as developers, it
is fair to state that this is also concerning. As of today, there exist several unknown holes and
errors in the peptide-MHC mapping space of NetMHCpan, which are still in hiding due to the fact
that its predictions tend to be blindly trusted. This lack of inquisitive behaviour perpetuates a
cycle which can only be broken through careful examination of cases where the algorithm does not
succeed or where different predictors do not arrive at a consensus, with a strong foundation on
unbiased experimental validation, as seen in [282]. Such studies will eventually provide the neces-
sary information to compensate for such misbehaviours, leading to better and more comprehensive
peptide-MC binding predictions.

Moving on, and having completed the deployment of improved state-of-the-art methods, we
left the realm of shallow learning behind and set sail to the uncharted territory of Deep Learn-
ing for immunopeptidomics. The results of such a voyage were described in the fifth chapter of
this manuscript, where we explored different techniques to navigate peptide-MHC binding data in
a completely original way. For this, a novel framework to exploit the sliding dot product of 1D
convolutional neural networks was introduced, enabling us to project a given MHC ligand space
onto the network’s filter space. This resulted in the generation of interesting mathematical objects,
termed by us “projections”, which were revealed to carry valuable information regarding inner data
representations of convolutional filters. The posterior analysis of such projections suggested that
the employed CNN was capable of abstracting the input space into smaller, sparse representations of
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MHC binding motifs. In addition, output neuron weights acted as a magnitude and sign correction
mechanism for such filter representations. Results for six different HLAs were computed, spanning
Class I and Class II alleles. For HLA-I, projections exhibited overall high concordances to known
experimental binding motifs. However, the HLA-A*01:01 molecule revealed that, in order to fully
recover all anchors, an alignment step was required. After developing a concordant alignment pro-
cedure, logo representations became sharper and clearer. This procedure proved to be essential to
successfully recover the projections of HLA-IT molecules HLA-DRB1*03:01 and HLA-DRB1*11:04,
whose unaligned projections were considerably noisy. Looking at the full projection panels for the
six trained models, it is evident that different levels of length resolution can be achieved by the usage
of various convolutional kernel sizes. With longer kernels detecting positional relationships between
amino acids, and smaller kernels spiking at uncorrelated positions (but helping to gain information
magnitude), the proposed CNN architecture exhibited an exceptional capacity to generate compos-
ite, multi-resolution abstractions of sequence patterns, which are ideal for motif discovery.

In closing, there are several ways in which the work presented in this thesis could be continued.
First and foremost, incorporation of the T cell side of the problem is paramount. Up to today,
peptide-MHC binding predictors are trained purely on MHC binding data, which is necessary for
peptide immunogenicity, but not sufficient for it. As new technologies emerge and consolidate,
iteration speeds should go up, while prices go down. With this, immunoinformatic pipelines for
the high-throughput mining of peptide-MHC-Tcell binding (the golden triad) shall become more
abundant and affordable. The result of such technological milestones will be, most likely, an un-
precedented capacity to understand and predict immune responses against several pathogens, but
also currently impenetrable illnesses such as cancer. Also, in combination with the ever-growing
availability of patient-specific therapeutics, all the aforementioned shines a light of hope on disease
treatment and prevention. Besides the far-fetched goal of T cell data exploitation, there may exist
several other, short-term ways to better draw the boundary separating MHC ligands from non-
ligands. Since peptide presentation is the last step of a long antigen processing pathway, further
exploration of such pathways for MHC-I and MHC-II may increase the quantity of discriminatory
training features (this was explored already for the Class I system in O’Donnell et al. [283], and
for Cass II in Barra et al. [215] and Reynisson et al. [253], but still there may be room for further
investigation). Other ways of increasing available features may be related to utilizing protein expres-
sion measurements (i.e. derived from RNAseq or proteomics data), integrating post-translational
modifications, incorporating information associated to the self proteome, or by (somehow) cleverly
utilizing epitopes also during the model’s training phase. From a machine learning perspective,
expanding current approaches to deeper alternatives may be desirable, moreover if we count on
the genomical data yields the future seems to offer. Several models have already been proposed
in the last years [283—292], but these lack basic rigurosity such as proper data partitioning to re-
duce homology overlapping, and thus results cannot be trusted. However, a recent publication by
Cheng et al. [293] correctly addressed the issue of partition redundancy and implemented BERT (a
well known deep ANN architecture from the transformers family) together with multiple instance
learning to boost MHC-II binding predictions and fully deconvolute/annotate EL MA data, with
promising results that point interesting directions.

Lastly, and by virtue of my advisor’s astounding commitment, all the work presented in this
thesis is now a running cog inside a big machine that, without a doubt, will keep on getting bigger
and bigger. In the meanwhile, I am left with a satisfying, content feeling of having participated in
this small contribution to human health and disease research.
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