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Abstract

In this paper, we consider an economy with infinitely many commodi-
ties and market failures such as increasing returns to scale and external
effects or other regarding preferences. The commodity space is a Banach
lattice possibly without interior points in the positive cone in order to
include most of the relevant commodity spaces in economics. We propose
a new definition of the marginal pricing rule through a new tangent cone
to the production set at a point of its (non-smooth)-boundary. The ma-
jor contribution is the unification of many previous works with convex or
non-convex production sets, smooth or non-smooth, for the competitive
equilibria and for the marginal pricing equilibria, with or without exter-
nal effects, in finite dimensional spaces as well as in infinite dimensional
spaces. In order to prove the existence of a marginal pricing equilibria, we
also provide a suitable properness condition on non-convex technologies to
deal with the emptiness of the interior of the positive cone. Mathematics

Subject Classification: 91B50
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1 Introduction

General economic equilibrium theory, with infinite dimensional commodity spaces,
has been a growing topic during the eighties and nineties and is still a very ac-
tive field, which allows to incorporate some non-competitive behavior such as
asymmetric information. Since [1], the literature has considered infinite dimen-
sional spaces with an order structure to encompass several economically relevant
features such as commodity differentiation, uncertainty and infinite time hori-
zon among others. The above extensions are not straightforward extensions of
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the well documented finite dimensional case. Indeed, closed and order bounded
sets are not compact, equilibrium prices are not necessarily continuous and joint
continuity does not hold among other difficulties.

The first part of that literature was mainly considering Banach lattices ([2],
[3], [4] and [5] among others). The contributions of [6], [7] and [8] have shown
that the existence of a general equilibrium whose commodity space is a vector
lattice is guaranteed if the price space is also a lattice. More recently, [9] and
[10] showed that the lattice structure can be left out, when Walrasian economies
are considered.

The above literature only deals with convex production sets and the com-
petitive case. The marginal pricing rule behavior comes from [11] in order to
treat the case, when profit-maximization is no longer suitable. For instance,
it happens when there are increasing returns to scale or more general types
of non-convexities in production. A proper mathematical treatment in a fi-
nite dimensional setting was first provided in [12] and then generalized in [13]1

through the Clarke’s tangent cone. Indeed, for a production plan yj ∈ Yj , a
vector y ∈ RL belongs to the Clarke’s tangent cone if for every sequence (ynj )
in Yj converging to yj and every sequence (tn) in ]0,∞[ such that tn ↓ 0 there
exists a sequence (yn) in Yj converging to y such that ynj + tnyn ∈ Yj for all
n ∈ N ([14]). The tangent cone can be geometrically interpreted as a first order
approximation of the set yj−Yj . The advantage of this cone among many others
in non-smooth analysis, is that it is always convex and lower semi continuous
under a standard free-disposal assumption. The marginal pricing rule is then
defined by the fact that prices belong to the Clarke’s normal cone, which is the
polar of the Clarke’s tangent cone. When the commodity space is RL, we can
directly define the normal cone as the convex cone generated by the vectors or-
thogonal to Yj at yj and the limits of vectors which are orthogonal to Yj in the
neighborhood of yj . In economic words, the marginal pricing rule means that
the j-th producer fulfills the first-order necessary condition for profit maximiza-
tion. The Clarke’s normal cone enjoys also the nice property to coincide with
the normal half line when the production set is smooth or with the Minkowski
normal cone when the production set is convex.

Using the Clarke’s normal cone, [15] provides a proof of the existence of a
marginal pricing equilibrium when several firms have non-convex technologies.
This paper, in turn, has been generalized in two ways by considering exter-
nalities and by considering infinitely many commodities. In the first case, the
motivation comes from the fact that external factors are, very often, source of
non-convexities in both production and consumer preferences. [16] have shown
by means of an example that the Clarke’s normal cone to the production set
for a fixed environment is not longer the right concept since the graph is not
closed with respect to the external factor. Consequently, the marginal pricing
rule given an external factor must consider not only the close productions for
the same level of external effect but also those which are associated to different

1The original working paper was published in 1982 and became well known among theorists
before its publication in 1990.
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but close levels of external effect. This means that the producer takes into ac-
count the change of the shape of the production set around a given production,
when the external effects vary. The new cone they obtain is larger than the
Clarke’s one which is actually the cost to be paid to get a normal cone with
a closed graph. Some papers, [17], [18] and [19], have studied the marginal
pricing equilibria with infinitely many commodities but only in the space L∞.
When externalities are added the same space was used by [20] and [21]. So
far, no additional results has been established with non-convexities and/or with
externalities in an infinite dimensional setting.

The aim of this paper is first to consider Banach lattice as commodity space
to encompass most of the relevant economic models. Second, we provide a suit-
able definition of the marginal pricing rule based on a tangent cone in Banach
lattices for non-convex production sets with external effects. This definition is
extending the previous ones in the literature in the sense that if the produc-
tion sets are convex, the marginal pricing rule coincides with the competitive
behavior, if the production sets are smooth like in [22, 20, 21], we recover the
standard unique normal price, in a finite dimensional space without external
effects, we recover the Clarke’s tangent cone, with external effects, the marginal
pricing rule introduced in [16], and if the commodity space is L∞, the concept
coincides with the one of [18]. Third, to overcome the difficulty coming from
the emptiness of the positive cone, we exhibit a suitable properness condition
on productions, which is inspired by the one of [23]. Our main result is to get
the existence of a marginal pricing equilibrium under assumptions at the same
level of generality than those for the competitive equilibrium.

The motivation for proving existence in such a general framework is not
only theoretical but mainly because it allows to cover the relevant economic
applications. As pointed out previously, we can encompass many interesting
topics like uncertainty, infinite horizon and commodity differentiation among
others. Specifically, some of these contexts are (i) endogenous growth models à
la Romer [24] or [25]. In these models external effects play a key role and the
idea of sustained growth requires to consider infinitely many periods. Further,
in both models production exhibits increasing returns to scale which is a special
case of non-convexity. (ii) Product differentiation and international trade: [26]
bases his model on increasing returns and product differentiation and shows the
correlation between market size and trade in differentiated products which is
relevant with an infinite dimensional commodity space. (iii) Financial markets
with bankruptcy chains: a typical form of externality is what can be generated
through a “chain” of default values between agents holding “short” and “long”
positions, possibly interrelated mutually. In these context, models of general
equilibrium with incomplete markets with default or bankruptcy and infinitely
many states of the world fit as special cases of our model (see, for example, the
special issue of Journal of Mathematical Economics, 1996).

From a mathematical point of view, the definition of the new tangent cone
combines the tools of the Clarke’s tangent cone extending by the one in [16] to
encompass the externalities and the one of [18] for the infinite dimensional. But
to overcome the fact that the open ball may not be order bounded, we have to
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combine weak* open neighborhoods and order intervals to get the desired con-
tinuity properties. Another contribution of the paper is to provide a so-called
local star-shaped assumption on the production sets to avoid an abstract condi-
tion (Assumption TC) borrowed from [18]. This assumption is satisfied in finite
dimensional spaces thanks to the free disposal assumption or when production
sets are convex. It translates the idea that the shape of the production set is
not too chaotic like a fractal. It has the advantage of being directly set on the
production sets and not as a property of the tangent cone.

As for the existence proof, we first consider the case where the interior of
the positive cone is nonempty. Then we use the method of [27] by considering
the limit of a sequence of equilibria in suitable truncated economies with finite
dimensional commodity spaces as in [18]. To consider the case where the positive
cone has an empty interior, we first restrict the commodity space to the principal
ideal generated by the vector e. Then a new topology is generated on the
restricted space which is stronger than the relative (norm) topology, so that the
interior of the positive cone is non-empty. We get the existence of an equilibrium
with this restricted commodity space by using the first step. To go beyond, a
key properness assumption is required to prove that equilibrium in the restricted
space is actually an equilibrium in the original economy. More precisely, the
question at stake is to extend the price functional from the principal ideal to
the whole space as it is the case for competitive equilibrium but also to check
that the necessary assumptions are inherited when we restrict the commodity
space to the order ideal. That is why we adapt the properness condition of
[23] to our setting. Nevertheless, we need a uniform properness instead of a
pointwise properness since the definition of the normal cone involves not only
the reference production but also productions in a neighborhood. To the best
of our knowledge, the properness condition in [28] is the only one involving non-
convex productions sets. It is suitable for supporting weakly Pareto optimal
allocations but not for the more demanding existence result.

The paper is organized as follows: Section 2 deals with the mathematical
structure. Section 3 presents the model and the Assumptions together with
the specification of the new marginal pricing rule. In Section 4, we state an
existence result, when the interior of the positive cone has a non-empty interior.
Then, in Section 5, we extend the analysis to more general Banach lattices whose
positive cones have an empty interior. For that purpose, we state our properness
condition. Several technical proofs of propositions, lemmas and theorems are
given in Appendix.

2 Terminology and Notation

Let L be a Banach lattice, i.e., a Riesz space equipped with a complete lattice
norm denoted by ‖ · ‖. The space L is also endowed with a Hausdorff locally
convex-solid topology τ , which is weaker than the norm topology and such that
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all order intervals are τ -compact2. L+ = {x ∈ L : x ≥ 0} is the positive cone of
L which is τ -closed.

Let L∗ be the topological dual of L. For x ∈ L and π ∈ L∗, π(x) is the
evaluation or the value of the commodity bundle x for the price π. We denote
by σ∗ the weak∗ topology on L∗ and by ‖ · ‖∗ the dual norm. Let LM be the
product space given by the cartesian product of M copies of the space L. If
each space L is endowed with the topology τ , we denote by

∏

LM τ the product
topology of LM . The product space LM is also a Banach lattice. For all x ∈ L,

τ (x) is the set of τ -neighborhood of x and for all z ∈ LM , ∏
LM

τ
(z) is the set

of
∏

LM τ -neighborhood of z.
Let A : LM 7→ L be a correspondence. We say that A has τ -closed values if

for every x ∈ A, A(x) is a τ -closed subset of L.
For further details on infinite dimensional spaces and Banach lattices, we

refer to [31] and to [30].

3 The Model

There are finite sets of consumers and producers I and J respectively. Each
element z = ((xi)i∈I , (yj)j∈J) belongs to LI+J , where LI+J is the product space
given by the Cartesian product of #I+#J copies of the space L. Each consumer
i has a consumption set and a other regarding preference relation, which depends
upon the actions of the other economic agents. Formally, for each i ∈ I, Xi :
LI+JL+ is the consumption correspondence. For the environment z ∈ LI+J ,
Xi(z) ⊂ L+ is the consumption set of the i-th consumer. We denote by �i,z the
binary preference relation of agent i on the setXi(z). This relation is assumed to
be complete, reflexive and transitive. The relation of strict preference x ≻i,z x′

is then defined by x �i,z x′ and not x′ �i,z x. We do not assume that we can
compare two commodity bundles if they do not share the same environment.
Let ωi ∈ L+ be the initial endowment of the i-th agent such that ωi ∈ Xi(z)
for all z ∈ LI+J . Let us denote the total initial endowment of the economy by
ω =

∑

i∈I ωi 6= 0.
Each producer j has a production set which also depends upon the actions of

the other agents. For each j ∈ J , Yj : L
I+JL is the production correspondence.

For the environment z ∈ LI+J , Yj(z) ⊂ L is the set of all feasible production
plans for the j-th producer. We denote the ‖ · ‖-boundary of Yj(z) by ∂Yj(z)

3.

2The norm is a lattice norm if for all (x, ξ) ∈ L2, |x| ≤ |ξ| implies ‖x‖ ≤ ‖ξ‖ where |x| is
the absolute value of x, that is x ∨ 0 + (−x) ∨ 0. B(0, 1) = {x ∈ L : ‖x‖ < 1} denotes the
open ball of center 0 and radius 1, B(0, ε) = εB(0, 1) the open ball of center 0 and radius ε,
B(x, ε) = x+ εB(0, 1) the open ball of center x and radius ε, B̄(0, 1) = {x ∈ L : ‖x‖ ≤ 1} the
closed ball of center 0 and radius 1. A subset E of L is called solid if for all (x, y) ∈ E × L,
if |y| ≤ |x| then y ∈ E. For x, y ∈ L with x ≤ y, the interval [x, y] is defined by the set
{z ∈ L : x ≤ z ≤ y} . The principal ideal generated by x ∈ L is L(x) =

⋃

n∈
n[−x, x] which

is a vector sublattice of L. An element x ∈ L+ is an order unit if L(x) = L. The ‖ ·‖-topology
is locally solid with a base of neighborhoods of zero which are radial and circled sets.

3We are considering productions on the boundary of the production set since under the
free-disposal assumption when

∫

L+ 6= ∅, ∂Yj(z) = {y ∈ L : ({y}+
∫

L+) ∩ Yj(z) = ∅}
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The price set is given by S = {π ∈ L∗
+ : ‖π‖L∗ = 1}.

Let ri :
1+J → be the wealth function of the i-th consumer. If π ∈ S and

(yj)j∈J ∈
∏

j∈J Yj(z), her/his wealth is ri(π(ωi), (π(yj))j∈J). This encompasses
the private ownership economy as a particular case, i.e., when ri(π(ωi), (π(yj))j∈J) =
π(ωi) +

∑

j∈J θijπ(yj) for θij ≥ 0 and
∑

i∈I θij = 1 for all j ∈ J and i ∈ I.

For a given environment z ∈ LI+J and a given initial endowments ω′ ∈ L+,
we denote by A(ω′, z) the set of attainable productions, that is,

A(ω′, z) := {(y′j) ∈
∏

j∈J

∂Yj(z) :
∑

j∈J

y′j + ω′ ∈ L+}

In order to consider only consistent situations, we define the set

Z := {z = ((xi)i∈I , (yj)j∈J) ∈ LI+J : ∀i ∈ I, xi ∈ Xi(z); ∀j ∈ J, yj ∈ ∂Yj(z)}

The set of weakly efficient attainable allocations corresponding to a given
total initial endowment ω′ ∈ L+ is given by

A(ω′) := {z = ((xi)i∈I , (yj)j∈J) ∈ Z :
∑

i∈I

xi =
∑

j∈J

yj + ω′}

Finally, we introduce e ∈ L+ as a reference commodity bundle satisfying
‖e‖ = 1. A natural candidate is e = ω/‖ω‖ but this is not always the right
choice. Indeed, when L is the space L∞ of essentially bounded measurable
functions, it is convenient to choose e = χ the constant function equal to 1.

In the following, we consider two cases namely when the interior of L+ is
nonempty or when it is empty. In the first case, we assume that e belongs to
the interior of L+. In that case, since 0 belongs to the interior of the order
interval [−e, e], then the norm ‖ · ‖ is equivalent to the lattice norm associated
to e defined by:

‖x‖e = inf{t ∈+: |x| ≤ te}

So, we will then assume that the norm ‖ · ‖ is actually the norm ‖ · ‖e, which
implies that the closed balls are actually order intervals.

When the interior of L+ is empty, we assume that e is a quasi-interior point
of L+ (i.e. e is strictly positive), which means that the principal ideal L(e)
generated by e is norm-dense in L+.

3.1 Marginal Pricing Equilibrium

The economic motivation for the study of the marginal pricing equilibrium comes
from the second theorem of welfare economics telling us that at a Pareto optimal
allocation, there exists a common price satisfying the marginal pricing rule for
each producer. A producer follows the marginal pricing rule with respect to a
given price at a given production if it maximizes the profit not necessarily on
the whole production set, as it is the case when the production set is convex,
but on a first order approximation, which is formally defined as the tangent
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cone at the given production. This result holds true in very general frameworks
(see, e.g., [12], [29], [32] and [18]) where the marginal pricing rule is defined by
a notion of normal cone, the set of outward direction, which is the dual of the
tangent cone, the set of inward or quasi-inward directions.

But, when we depart from the convex production sets where the Minkowski
normal cone is the only relevant one, there are many possibilities, many nor-
mal cones, to define the marginal pricing rule, specially in infinite dimensional
spaces. It is known since [33] that some of these normal cones are compatible
with the existence of an equilibrium and some other no. This is mainly due to
two key properties, convexity and closedness of the graph. But, on the other
hand, the smaller is the normal cone, the more informative is the existence re-
sult. So, we have to combine these two opposite criteria in the search of the
right definition of the marginal pricing rule.

In finite dimensional space, the Clarke’s normal cone as introduced in [13]
and extended in [16] to encompass externalities is the right concept and, in
some sense, the smallest one. Unfortunately, its graph is not closed for the
relevant topologies in infinite dimensional commodity spaces. The existence
proof requires the closedness for the weak and weak-star topologies, whereas
the Clarke’s normal cone is based only on the norm topology. That is why
we borrow from [18] an adaptation of the definition of the Clarke’s normal
cone to introduce weak open neighborhood. But, since these neighborhoods for
the weak topologies are very large, actually always unbounded, we make this
transposition into two steps in order to get a smaller normal cone. Actually, we
first consider a bounded neighborhood of the relevant parameters represented
below by the parameter ρ and then we take the intersection for all non-negative
ρ.

Furthermore, in Riesz spaces, we can also use the order structure and order
intervals to define order convergences. But, we have to distinguish between the
case where the positive cone has a nonempty interior or not. Indeed, when
the interior is nonempty, the norm closed unit ball is an order interval and so
there is no need to consider order intervals. But, in this paper where we deal
with general Riesz spaces, we also introduce the order interval r[−e, e], in the
definition below to measure the “distance” to the production set, which is tighter
than the ball B(0, re). So, the definition of the tangent cone is as follows:

For every (ȳj , z) ∈ ∂Yj(z)× Z ⊂ L1+I+J and ρ > 0 we let:

T̂ ρ

Yj(z)
(ȳj) :=































ν ∈ L :

∃ η > 0 such that ∀ r > 0,
∃ V ∈∏

LI+J
τ
(z), U ∈τ (ȳj) and ε > 0

∀ z′ ∈ B(z, ρ) ∩ V,
∀ ȳ′j ∈ B(ȳj , ρ) ∩ U ∩ Yj(z

′)
and ∀ t ∈]0, ε[, ∃ ξ ∈ r[−e, e] such that

ȳ′j + t(ν + η(ȳj − ȳ′j) + ξ) ∈ Yj(z
′)































Then, we define the set

T̂Yj(z)(ȳj) := ∩ρ>0T̂
ρ

Yj(z)
(ȳj).
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By polarity, we define

N̂Yj(z)(ȳj) = [T̂Yj(z)(ȳj)]
o = {π ∈ L∗ : π(ν) ≤ 0 ∀ν ∈ T̂Yj(z)(ȳj)}.

To comment this definition, we remark that the introduction of the neigh-
borhood V for the parameter z is the way to take into account the external
effects on production. Then, the intersection over the parameter ρ and the per-
turbation of ν by the additional term η(yj − y′j) is a way to get the conditional
closeness of the graph with respect to the topology τ . Finally, choosing ξ in the
order interval r[−e, e] is the way to narrow the range of ξ, or, in other words, to
say that the vector ȳ′j + t(ν + η(ȳj − ȳ′j)) is close to the set Yj(z

′) for the order
relation which is tighter than the norm. Actually, if e belongs to the interior
of L+, then we can replace the order interval by a ball, which is closer to the
standard definition of a tangent cone in the spirit of Clarke [14]. Finally, note
that the set T̂Yj(z)(ȳj) is not necessarily convex.

From an economic point of view, the idea is very simply: for computing
prices, the owner of the j-th firm observes not only the current production plan
yj given the environment z, but also all production plans y′j close to yj that are
consistent with the environments z′ which are close to z. This is the same idea
in the models of [34], [35] and [18]. The main difference is the mathematical
notion of nearness that we use.

The marginal pricing rule is formally defined as: given (ȳj , z) ∈ ∂Yj(z)×Z,

the j-producer chooses the prices in N̂Yj(z)(ȳj) ∩ S. In words, to compute the
prices according to the marginal pricing rule, the producer takes into account
the fact that his production set depends on external effects. Finally, the set of
production equilibria is PE := {(π, z) ∈ S × Z : π ∈ ∩j∈JN̂Yj(z)(yj)}

We are now able to state the definition of a marginal pricing equilibrium.

Definition 1 A marginal pricing equilibrium of the economy E is an element
(z = (xi)i∈I , (yj)j∈J), π) in Z × S such that:

1. π(xi) ≤ ri(π(ωi), (π(yj))j∈J) and π(x′
i) > ri(π(ωi), (π(yj))j∈J) whenever

x′
i ≻i,z xi for all i ∈ I.

2. π ∈ N̂Yj(z)(yj) ∩ S for all j ∈ J

3.
∑

i∈I xi =
∑

j∈J yj + ω

3.2 Basic Assumptions

We now posit the following assumptions. Some of them became standard in the
literature with increasing returns

Assumption (C)
For all i ∈ I

1. Xi is a convex-valued correspondence with a (
∏

LI+J τ, τ) closed graph.
Furthermore, for all z ∈ LI+J , 0 ∈ Xi(z) and Xi(z) is a solid subset of
L+.
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2. For all z ∈ LI+J , the half-line {δe : δ > 0} is included in Xi(z). For all
x′
i ∈ Xi(z) and for all δ > 0 there exists a neighborhood V ∈∏

LM
τ
(z)

such that x′
i + δe ∈ Xi(z

′) for all z′ ∈ V .

3. For every z ∈ LI+J , and all x̄i ∈ Xi(z) both sets {x′
i ∈ Xi(z) : x′

i �i,z x̄i}
and {x′

i ∈ Xi(z) : x̄i �i,z x′
i} are ‖ · ‖-closed. For all x′

i ∈ Xi(z) such that
x′
i ≻i,z xi, for all t ∈]0, 1[, tx′

i + (1 − t)xi ≻i,z xi. For every z ∈ A(ω),
there exists (x′

i)i∈I ∈
∏

i∈I(Xi(z)∩L(e)) such that x′
i ≻i,z xi for all i ∈ I.

4. The set Gi = {(x′
i, x̄i, z) ∈ L2 × LI+J : (x′

i, x̄i) ∈ Xi(z)
2, x′

i �i,z x̄i} is a
(‖ · ‖ × τ ×

∏

LI+J τ)-closed subset of L2 × LI+J .

5. The wealth function ri : R
1+J → R is continuous and increasing. Further-

more, for all ((vi), (vj)) ∈ RI+J ,
∑

i∈I ri(vi, (vj)j∈J) =
∑

i∈I vi+
∑

j∈J vj
and if

∑

i∈I ri(vi, (vj)j∈J) > 0 then ri(vi, (vj)j∈J) > 0 for all i.

Assumption (P) For every j ∈ J

1. Yj : L
I+JL has a (

∏

LI+J τ, τ)-closed graph.

2. For every z ∈ LI+J , Yj(z) ∩ L+ = {0} and Yj satisfies the free-disposal
condition, that is, Yj(z)− L+ = Yj(z).

3. For all z ∈ LI+J , for all ȳj ∈ ∂Yj(z) and for all δ > 0, there exists
V ∈∏

LM
τ
(z), such that ȳj − δe ∈ Yj(z

′) for all z′ ∈ V .

Assumption B (Boundedness) For all ω′ ≥ ω
there exists b ∈+ such that, for all z ∈ Z, A(ω′, z) ∩ L(e)J ⊂ [−be, be]J .

Assumption SA (Survival) For all z ∈ Z, for all t ∈+ and for all
(π, (ȳj)) ∈ S×A(ω+ te, z), if π ∈ ∩j∈JN̂Yj(z)(ȳj), then π(

∑

j∈J ȳj +ω+ te) > 0

Assumption TC (Tangent cone) For all z ∈ Z, for all j and for all
ȳj ∈ ∂Yj(z), 0 ∈ T̂Yj(z)(ȳj).

Remark 1. Note that we assume non-satiation only on the attainable sets.
Together with the convexity of preferences, we have local non-satiation. We
assume continuity of preference relations with respect to the external factors
and to the consumption bundles.

Remark 2. Assumption C(1) states that Xi(z) is solid (i.e., it contains
order-intervals). We do so because we are considering consumption sets which
are not equal to the positive cone L+ (See [4]). We make use of this property
in Section 5.

Remark 3. By C(1), Xi(z) is a closed and convex subset of L+. Hence, by
C(2), one gets that for all x ∈ Xi(z), x+ δe ∈ Xi(z) for all δ ≥ 0. We note that
Assumption C(2) also implies that if a net (zγ)

∏

LI+J τ -converges to z, then
for every x′

i ∈ Xi(z) there exists a sequence (tγ) ∈ [0,∞[ which converges to 0
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and such that x′
i + tγe ∈ Xi(z

γ) for all γ. This is stronger than the standard
lower hemi-continuity condition on Xi, which will be exploited in Section 4.

From an economic point of view, since x′
i + δe is a possible consumption,

Assumption C(2) means that a perturbation of the externalities in a well chosen
small neighborhood V will not produce a so large effect on the consumption
possibilities as to x′

i + δe would be no longer possible. Thus a small change
in the externalities has a relatively small impact in consumption and can be
counterbalanced by a small move along the half-line generated by e.

Remark 4. Assumption C(3) says that feasible consumption vectors are
non-satiated in L(e) rather than in L. However, as we shall see later, L(e)
includes the relevant commodity bundles in the economy. We refer to [8] who
states an analogous assumption for a competitive economy.

Remark 5. With regard to the production sets, Assumption P(3) implies
that if a net (zγ)

∏

LI+J τ -converges to z, then for every y′j ∈ Yj(z) there
exists a sequence (tγ) ∈ [0,∞[ which converges to 0 and such that y′j − tγe ∈
Yj(z

γ) for all γ. As in Remark 3, we point out that this is stronger than the
standard lower hemi-continuity condition. Nevertheless, in finite dimensional
spaces, P(3) is satisfied if z 7→ Yj(z) is lower hemi-continuous under the free
disposal assumption.

This assumption is economically interpretable similarly to the one on the
consumption side. We point out that, in [20], there have been posited less
strong assumptions than C(3) and P(3) although they were less economically
meaningful. Besides the economic interpretation there is a technical reason for
Assumption P(3). We need it in order to prove that profit maximization is the
behavior followed by producers when production correspondences are convex-
valued (See Proof of Proposition 3 (6)).

Remark 6. Boundedness assumption says that feasible production vectors
belonging to a principal ideal are order bounded which, in turn, implies that
the attainable set in L(e)I+J belongs to [−ω′ −#Jbe, ω′ +#Jbe].

For spaces whose positive cone has a non-empty interior, Assumption B is
automatically satisfied if A(ω′) is norm-bounded.

Remark 7 As consequences of Assumption TC, we have −L+ ⊂ T̂Yj(z)(ȳj)

and N̂Yj(z)(ȳj) ⊂ L∗
+. Later we will show that N̂Yj(z)(ȳj) is not reduced to the

null vector. This Assumption is also made in [18].
The following assumption is stronger than Assumption TC but it exhibits

two advantages: first, it is stated directly on the production sets, not on the
tangent cone, and it has an easier economic interpretation as a reinforcement of
Assumption P(3).

Assumption SP(3) For all z ∈ LI+J , for all ȳj ∈ ∂Yj(z) and for all
δ > 0 there exists V ∈∏

LI+J
τ
(z), U ∈τ (ȳj) such that for all z′ ∈ V , for all

ȳ′j ∈ Yj(z
′) ∩ U , for all t ∈]0, 1], t(ȳj − δe) + (1− t)ȳ′j ∈ Yj(z

′).
If Yj(·) satisfies Assumption SP(3), we say that Yj is

∏

LI+J τ -locally star-
shaped with respect to ȳj − δe whenever ȳj ∈ Yj(z). We easily check that As-
sumption SP(3) is stronger than Assumption P(3). If Yj(z) is convex for all z,
Assumption SP(3) is clearly a consequence of Assumption P(3). Now we prove
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that Assumption TC is satisfied if Yj satisfies Assumptions P and SP(3).
Let z ∈ Z and ȳj ∈ ∂Yj(z). Let ρ > 0 and take η = 1. Let r > 0 and choose

δ > 0 smaller than r. Let V and U be the weak-open sets as given by Assumption
SP(3) and ε = 1. Then, for all z′ ∈ B(z, ρ)∩V , for all ȳ′j ∈ B(ȳj , ρ) ∩ U ∩ Yj(z

′)
and for all t ∈]0, ε[, we have that the vector t(ȳj − δe) + (1− t)ȳ′j = ȳ′j + t(ȳj −

ȳ′j − δe) ∈ Yj(z
′), which means 0 ∈ T̂ ρ

Yj(z)
(ȳj). Since this is true for all ρ, we

conclude that 0 ∈ T̂Yj(z)(ȳj).
We finally remark that Assumption SP(3) is a consequence of Assumption

P(3) when L is finite dimensional. So, Assumption SP(3) is necessary only to
deal with infinite dimensional spaces in the non-convex case.

If Assumption P is satisfied and L is finite dimensional, let z ∈ LI+J and ȳj ∈
∂Yj(z)(ȳj). Let δ > 0 and V be the neighborhood of z coming from Assumption
P(3) that is ȳj − δe ∈ Yj(z

′) for all z′ ∈ V . Let us consider the neighborhood
of ȳj , U = {ȳj − δe}+

∫

L+. From the free-disposal assumption and since L is
finite dimensional, the norm topology is equal to the weak topology. Thus, for all
z′ ∈ V , for all ȳ′j ∈ Yj(z

′)∩U and for all t ∈]0, 1[, the vector t(ȳj−δe)+(1−t)ȳ′j =
ȳ′j − t(ȳ′j − ȳj + δe) belongs to Yj(z

′) from the free-disposal assumption and the
fact that ȳ′j − ȳj + δe belongs to L+.

3.3 Comments on the Marginal Pricing Rule

Proposition 3 below allows us to compare the marginal pricing rule with the
existing ones in the literature. We first define two correspondences in order to
compare with the existing notions in finite dimensional commodity spaces. For
every (ȳj , z) ∈ ∂Yj(z)× Z ⊂ L1+I+J , we let

T̂Yj(z)(ȳj) :=







ν ∈ L :
∀r > 0 ∃ ε > 0 : ∀z′ ∈ B(z, ε)
∀ȳ′j ∈ B(ȳj , ε) ∩ Yj(z

′), ∀t ∈]0, ε[
∃ ξ ∈ B(0, r) : ȳ′j + t(ν + ξ) ∈ Yj(z

′)







and
N̂Yj(z)(ȳj) = [T̂Yj(z)(ȳj)]

o = {π ∈ L∗ : π(ν) ≤ 0 ∀ν ∈ T̂Yj(z)(ȳj)}

Proposition 2 Suppose that Assumption P holds, then for every (ȳj , z) in
∂Yj(z)× Z

1. T̂Yj(z)(ȳj) is a convex cone and −L+ ⊂ T̂Yj(z)(ȳj).

2. T̂Yj(z)(ȳj) ⊂ TYj(z)(ȳj) where the former is the Clarke’s tangent cone to the
set ∂Yj(z) at the vector ȳj. Without externalities, both notions coincide.

The proof is given in Appendix. The inclusion for the tangent cones implies
the reverse inclusion for the normal cones: NYj(z)(ȳj) ⊂ N̂Yj(z)(ȳj) ⊂ L+, where
NYj(z)(ȳj) is the Clarke’s normal cone.

We provide below some properties of the marginal pricing rule. The most
important feature are the following: when the production sets Yj(z) are convex,
then the producers maximize their profit taken the price as given as well as the
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environment z; when there is no externality and the interior of the positive cone
is nonempty, it coincides with the concept of [18]; if L is finite dimensional,
then we recover the concept of [16] and if, furthermore, we have no externality,
we are back to the definition of the marginal pricing rule based on the Clarke’s
normal cone as introduced by Cornet in [13]. Since the proof is long, we defer
it to the Appendix.

Proposition 3 Under Assumptions P and TC, for (ȳj , z) ∈ ∂Yj(z)× Z.

1. T̂Yj(z)(ȳj) is a cone, −L+ ⊂ T̂Yj(z)(ȳj) and N̂Yj(z)(ȳj) ⊂ L∗
+ is a convex

and σ∗-closed cone.

2. T̂Yj(z)(ȳj) ⊂ T̂Yj(z)(ȳj) and N̂Yj(z)(ȳj) ⊃ N̂Yj(z)(ȳj).

3. T̂Yj(z)(ȳj) ⊂ TYj(z)(ȳj) where the former is the small tangent cone of [18]
to the set Yj(z) at ȳj.

4. If e ∈
∫

L+ then T̂Yj(z)(ȳj) is a convex cone.

5. If L is finite dimensional, then N̂Yj(z)(ȳj) ∩ S = MP (ȳj , z), where the
later is the marginal pricing rule in finite dimensional economies of [16].

6. If Yj is convex-valued

N̂Yj(z)(ȳj) = {π ∈ L∗ : π(ȳj) ≥ π(y′j) for all y′j ∈ Yj(z)}

Remark Let us note that since for all z ∈ LI+J the set Yj(z) satisfies free

disposal, then ν ∈ T̂Yj(z)(ȳj) if and only if for all ρ > 0 there exists η > 0 such
that for all r > 0 there are V ∈∏

LI+J
τ
(z), U ∈τ (yj) and ε > 0 such that

for all z′ ∈ B(z, ρ) ∩ V , for all ȳ′j ∈ B(ȳj , ρ) ∩ U ∩ Yj(z
′) and for all t ∈]0, ε[ it

follows that ȳ′j + t(ν + η(ȳj − ȳ′j)− re) ∈ Yj(z
′).

In order to complete our comparison with the literature, we consider now
smooth production sets, i.e., when for all z ∈ Z the technology is described by
Yj(z) = {ζj ∈ L : fj(ζj , z) ≤ 0} where fj : L × LI+J → R is a differentiable
mapping called the transformation function. Let us consider the following as-
sumption:

Assumption SB (Smooth boundary)

1. fj is continuous for the τ ×
∏

LI+J τ topology on L× LI+J ;

2. fj(·, z) is Fréchet differentiable and Lipschitz on L;

3. ∇1fj(ζj , z) belongs to L∗
+ \ {0} if ζj ∈ ∂Yj(z) where ∇1fj(ζj , z) is the

gradient of fj with respect to ζj ;

4. ∇1fj is continuous for τ ×
∏

LI+J τ toppology on L×LI+J and the norm
topology on L∗.
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Lemma 4 If the production set Yj(·) is described by a transformation func-

tion fj satisfying Assumption SB, then N̂Yj(z)(ζj) is the half-line generated by
∇1fj(ζj , z), which is also the Clarke’s Normal cone to Yj(z) at ζj.

The proof of this lemma is given in Appendix.

4 When L+ Has a Nonempty Interior

In this section, we assume that the positive cone L+ has a nonempty interior4

and the vector e ∈ intL+. Then [−e, e] is a neighborhood of 0 ([30]). At
this stage, we show the link between the closure of the graph of N̂Yj(·)(·) with

N̂Yj(·)(·). It will become a key result for the proof of existence of equilibria when
intL+ 6= ∅

Proposition 5 Let (zγ , πγ)γ∈Γ be a net in A(ω) × S converging to (z, π) for
the product-topology

∏

LI+J τ × σ∗ such that
a) πγ(yγj ) converges for all j

b) πγ ∈ N̂Yj(zγ)(y
γ
j ) for all γ ∈ Γ.

Then, π(yj) ≤ limγ π
γ(yγj ) and π ∈ N̂Yj(z)(yj) ∩ S if π(yj) = limγ π

γ(yγj )

We first state and prove the following lemma.

Lemma 6 Let ρ > 0 and ν ∈ T̂ ρ

Yj(z)
(ȳj). From the definition of T̂ ρ

Yj(z)
(ȳj),

there exists η > 0 such that for r̄ > 0, there exist εr̄ > 0, Vr̄ and Ur̄ such
that for all z′ ∈ B(z, ρ) ∩ Vr̄ and all ȳ′j ∈ B(ȳj , ρ) ∩ Ur̄ ∩ Yj(z

′), t ∈]0, εr̄[,
ȳ′j + t(ν + η(ȳj − ȳ′j) − r̄e) ∈ Yj(z

′). Then, for all z′ ∈ B(z, ρ) ∩ Vr̄ and all

ȳ′j ∈ B(ȳj , ρ) ∩ Ur̄ ∩ Yj(z
′), ν + η(ȳj − ȳ′j)− 2r̄e ∈ T̂Yj(z′)(ȳ

′
j).

Proof. Let ρ > 0 arbitrary and let ν ∈ T̂ ρ

Yj(z)
(ȳj). Let z′ ∈ B(z, ρ) ∩ Vr̄

and let ȳ′j ∈ B(ȳj , ρ) ∩ Ur̄ ∩ Yj(z
′). Let ε′ > 0 smaller than εr̄ and r̄

η
and

such that B(z′, ε′) ⊂ B(z, ρ) ∩ Vr̄ and B(ȳ′j , ε
′) ⊂ B(ȳj , ρ) ∩ Ur̄. Hence, for all

z′′ ∈ B(z′, ε′), for all ȳ′′j ∈ B(ȳ′j , ε
′) ∩ Yj(z

′′) and for all t ∈]0, ε′[, we have that
ȳ′′j + t(ν + η(ȳj − ȳ′′j )− r̄e) = ȳ′′j + t(ν + η(ȳj − ȳ′j) + η(ȳ′j − ȳ′′j )− r̄e) ∈ Yj(z

′′).
Since ȳ′′j ∈ B(ȳ′j , ε

′), η(ȳ′j − ȳ′′j ) ≥ −ηε′e ≥ −r̄e. Hence, by the free-disposal
property, ȳ′′j + t(ν + η(ȳj − ȳ′j) − 2r̄e) ∈ Yj(z

′′). So, for all r > 0, the vector

ν + η(ȳj − ȳ′j)− 2r̄e satisfies the definition of T̂Yj(z′)(ȳ
′
j) with ǫ′ has above and

ξ = 0 ∈ B(0, r).
Now we proceed with the proof of Proposition 5:
From Assumption B, A(ω) is bounded, so, there exists ρ > 0 large enough

such that for all (z′, z′′) ∈ A(ω)2, z′′ ∈ B(z′, ρ) and y′′j ∈ B(y′j , ρ) for all j.

Let ν ∈ T̂ ρ

Yj(z)
(yj). From the previous Lemma, there exists η > 0 such that

for r̄ > 0, there exist Vr̄ and Ur̄ such that for all z′ ∈ B(z, ρ) ∩ Vr̄ and all
ȳ′j ∈ B(yj , ρ) ∩ Ur̄ ∩ Yj(z

′), ν + η(yj − ȳ′j)− 2r̄e ∈ T̂Yj(z′)(ȳ
′
j).

4Examples of this kind of spaces are L∞ and the space C(K) of real-valued continuous
functionals on a compact Hausdorff space K endowed with the supremum norm
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Since (zγ , πγ)γ∈Γ converges to (z, π) for the product-topology
∏

LI+J τ × σ∗

and πγ(yγj ) converges for every j and πγ ∈ N̂Yj(zγ)(y
γ
j ) for every γ ∈ Γ, there

exists γ0 such that for every γ ≥ γ0, it follows zγ ∈ Vr̄ ∩ A(ω) ⊂ Vr̄ ∩ B(z, ρ)
and yγj ∈ Ur̄ ∩ B(yj , ρ) ∩ Yj(z

γ). It follows from the above lemma that for

all γ ∈ Γ, ν + η(yj − yγj ) − 2r̄e ∈ T̂Yj(zγ)(y
γj ). Since πγ ∈ N̂Yj(zγ)(y

γ
j ), we

get πγ(ν + η(yj − yγj )− 2r̄e) ≤ 0. Hence, π(ν) + ηπ(yj) − η limγ π
γ(yγj ) ≤ 2r̄.

Since this is true for all r̄ > 0 we deduce that π(ν) + π(yj) ≤ limγ π
γ(yγj ).

From Assumption TC, 0 ∈ T̂Yj(z)(yj) ⊂ T̂ ρ

Yj(z)
(yj). Consequently, the previous

inequality leads to π(yj) ≤ limγ π
γ(yγj ).

If π(yj) = limγ π
γ(yγj ), then we get π(ν) ≤ 0 for all ν ∈ T̂ ρ

Yj(z)
(yj), which is

larger than T̂Yj(z)(yj) and we conclude that π ∈ N̂Yj(z)(yj).
To get the existence of a marginal pricing equilibrium in the present section,

we follow the approach of Bewley [27]. Thus, we construct a directed set of
finite dimensional economies from which we can apply Theorem 3.1 of [16] in
each of them in order to get a net of equilibria in the truncated economies,
which converges to an equilibrium of the original economy.

Let F be a finite dimensional subspace of L containing the vectors e and
(ωi)i∈I . We denote by F the family of such subspaces directed by set inclusion.
For every F ∈ F , we define its positive cone by F+ = F ∩L+ and its interior is
∫

F+ = F ∩
∫

L+. We endow each F with an euclidean structure, the associated
norm being denoted ‖ · ‖F such that ‖e‖F = 1 and {e⊥F } ∩ F+ = {0}, where
e⊥F denotes the orthogonal space to e. The inner product of F will be denoted
by 〈·, ·〉F . Hence, the dual space of F is F itself, i.e., pF (x) = 〈pF , x〉F . For
x ∈ F we denote by BF (x, r) = B(x, r) ∩ F (resp. B̄F (x, r)) the open (resp.
closed) ball of center x and radius r in F for the euclidean structure.

The truncated consumption correspondence for the commodity space F is
given by XF

i : F I+JF+ such that XF
i (zF ) = Xi(z

F ) ∩ F+. In the same way,
the truncated production correspondence Y F

j : F I+JF , is defined by Y F
j (zF ) =

Yj(z
F ) ∩ F . Consequently, we define the set

ZF = {zF ∈ F I+J : ∀i ∈ I, xF
i ∈ XF

i (zF ) and ∀j ∈ J, yFj ∈ ∂Y F
j (zF )}

and let us note that ∂Y F
j (zF ) ⊂ ∂Yj(z

F ) ∩ F thanks to the free-disposal as-
sumption.

Let SF = {pF ∈ F 0
+ : 〈pF , e〉F = 1}, where F 0

+ denotes the positive polar
cone of F+. The revenue of the i-th consumer in the truncated economy is given
by the same revenue function ri. The restricted preference relation on XF

i (zF )
is �F

i,zF . Therefore, subeconomies are fully described by

EF = {(XF
i ,�F

i,zF , ri, ωi)i∈I , (Y
F
j )j∈J}

for all F ∈ F .
We point out that for all F ∈ F , for all zF ∈ F I+J , and for all i and j,

XF
i (zF ) and Y F

j (zF ) are non-empty subsets of F+ and F respectively. Propo-

sition 3 guarantees that for all F ∈ F and for all (ȳj , z) ∈ F 1+I+J , the set

N̂Y F
j

(z)(ȳj) ∩ SF = MPF (ȳj , z) =
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conv







p ∈ F :

∃ (ȳnj , z
n) ∈ L× LI+J and (pn) ∈ SF

such that (ȳnj , z
n) → (ȳj , z), (p

n) → p
ȳnj ∈ ∂Yj(z

n) and pn ∈ NYj(zn)(ȳ
n
j )







Finally we let

AF (ω′) =
{

zF ∈ ZF :
∑

i∈I x
F
i =

∑

j∈J yFj + ω′
}

⊂ A(ω′)

and

PEF =
{

(pF , zF ) ∈ SF ×AF (ω) : pF ∈
⋂

j∈J MPj(y
F
j , z

F )
}

4.1 Existence of marginal pricing equilibria

We can state now the following existence result

Theorem 7 The economy E = {(Xi,�i, ri, ωi)i∈I , (Yj)j∈J} has a marginal
pricing equilibrium if it satisfies Assumptions (C), (P), (B), (SA) and (TC).

Within the literature concerning externalities and increasing returns, the
above result extends the one of [16] by allowing an infinite dimensional space.
It also generalizes [18] since external effects are taken into account. In addition,
this model encompasses the one of [21] since we are considering non-smooth
technologies. With regard to the papers in which a general pricing rule is con-
sidered (for instance, [19] and [20]), we note that even though a larger number
of situations can be considered, the existence results require two additional as-
sumptions about boundedness of the losses of the firms and continuity of the
pricing rules.

4.2 Proof of Theorem 7

The proof follows the guidelines of [21]. The difference relies on the fact that
now we are considering non-smooth technologies.

Marginal pricing equilibria with a finite dimensional commodity space

We note that the Survival and the Local Non-Satiation assumption may
not be satisfied in the economy EF . Consequently, it seems that Theorem 3.1
of [16] cannot be applied. However, Lemma 8 below shows that whether fi-
nite dimensional commodity subspaces are large enough, then weaker versions
of those assumptions hold thanks to Proposition 5. Then, Proposition 9 will
show that these are, however, sufficient for proving an equilibrium in such sube-
conomies. We first prepare the ground for stating this lemma. Let ϑ̄ > 0 be a
real number. By Assumption B, there exists a > 2ϑ̄, such that for all z ∈ LI+J ,
A(ω + ϑ̄e, z) ⊂ [−a

2e,
a
2e]

J and A(ω + ϑ̄e) ⊂ [−a
2e,

a
2e]

I+J . Let r̄ > 2a such
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that {ω+ ϑ̄e}+ [−#Jae, #Jae] ⊂ [−r̄e, r̄e]. Let λ̄ be a real number such that
λ̄ ≥ 4#Jr̄ + ‖ω‖F . We will show later that the parameter λ̄ is large enough
so that all relevant productions (yj) belongs to AF (ω + λ̄e, zF ) whatever is the
environment zF .

Lemma 8 Under Assumptions (C), (P), (B), (SA) and (TC), there exists a
subspace F̂ ∈ F such that for all F ∈ F , if F̂ ⊂ F , then the subeconomy EF

satisfies:
(SAF ): For all (pF , zF , λ) ∈ PEF ×

[

0, λ̄
]

, if (yFj )j∈J ∈ AF (ω+λe, zF ) then

〈pF ,
∑

j∈J yFj + ω + λe〉F > 0

(LNSF ): For all ((xF
i )i∈I , (y

F
j )j∈J) ∈ AF (ω),

there exists (x′
i)i∈I ∈

∏

i∈I X
F
i (zF ) such that x′

i ≻i,zF xF
i for all i ∈ I.

The proof is in Appendix

Proposition 9 Let F̂ ∈ F be the subspace coming from Lemma 8. Under As-
sumptions (C), (P), (B), (SA) and (TC) if we have F̂ ⊂ F then the subeconomy
EF has an equilibrium (zF , pF ) ∈ ZF × SF .

Proof We remark that the economy EF does not satisfy Assumptions (SA)
and (LNS) but only (SAF ) and (LNSF ) so we need to explain how we can
nevertheless apply the existence result of [16].

The non-satiation assumption (LNS) is only used in [16] for attainable allo-
cations, so (LNSF ) is sufficient.

In [16], the Survival Assumption is used in Lemma 4.2 (3), Lemma 4.4 and
in Claim 4.3. For Lemma 4.2 (3) and Claim 4.3, the Survival Assumption is
applied only for productions plans which satisfy

∑

j∈J yj + ω + ϑe ≥ 0 with

ϑ ≤ ϑ̄. So Assumption (SAF ) is sufficient since λ̄ > ϑ̄.
As for Lemma 4.4, we need to introduce the following notations:
Let DF := B̄F (0, λ̄)I × B̄F (0, r̄)I and ZF

D := ZF ∩DF

λF
j : e⊥F × F I+J →

(sj , z) 7→ λF
j (sj , z)

ΛF
j (sj , z) = sj − λF

j (sj , z)e ∈ ∂Y F
j (z)

λF
0 : e⊥F × F I+J →

(sj , z) 7→ λF
0 (sj , z)

ΛF
0 (sj , z) = sj − λF

0 (sj , z)e ∈ ∂(−F+)
θF ((sj)j∈J , z) =

∑

j∈J λF
j (sj , z) + λF

0 (
∑

j∈J sj − proje⊥F ω, z)− 〈ω, e〉F ,

∆F ((sj)j∈J , z) =

{

(pj − p)j∈J









pj ∈ MPj(Λj(sj , z), j ∈ J
p ∈ N−F+(Λ

F
0 (s0, z)) ∩ SF

}

GMF
ϑ̄,α

=
{

((sj)j∈J , z) ∈ (e⊥F )J × ZF
D | ϑ̄ ≤ θF ((sj)j∈J , z) ≤ α

}

α = max
{

θF ((sj)j∈J , z) | ((sj)j∈J , z) ∈ (B̄F (0, 2a) ∩ {e⊥F })J × ZF
D

}

Then, we remark that, in the proof of Lemma 4.4, Assumption (SA) is only
necessary to prove that 0 6∈ ∆F ((sj)j∈J , z) for all ((sj)j∈J , z) ∈ GMF

ϑ̄,α
. This
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assumption is applied to productions (ΛF
j (sj , z)) for some ((sj)j∈J , z) ∈ GMF

ϑ̄,α
.

But Lemma 4.3 in [16] shows that
∑

j∈J ΛF
j (sj , z) + ω + αe ≥ 0 since we have

that θF ((sj)j∈J , z) ≤ α. So, to prove that Assumption (SAF ) is sufficient, it
remains to prove that α ≤ 4#Jr̄ + ‖ω‖F < λ̄.

For ΛF
j (sj , z) = sj − λF

j (sj , z)e ∈ ∂Y F
j (z), we claim that, ‖λF

j (sj , z)| ≤ ‖sj‖

for all j ∈ J . Indeed, if |λF
j (sj , z)| > ‖sj‖ then, if λF

j (sj , z) > 0, sj < λF
j (sj , z)e.

There exists ε > 0 such that sj+εe < λF
j (sj , z)e. Let ξ ∈ BF (sj−λF

j (sj , z)e, ε),

hence ξ < sj − λF
j (sj , z)e + εe < 0. Since 0 ∈ ∂Yj(z), it implies that ΛF

j (sj , z)

belongs to Yj(z) − int(F+) which contradicts ΛF
j (sj , z) ∈ ∂Y F

j (z). Now, let

us consider λF
j (sj , z) < 0, then λF

j (sj , z)e < sj . There exists ε′ > 0 such that

λF
j (sj , z)e < sj−ε′e. Consequently, for all ξ′ ∈ BF (sj−λF

j (sj , z)e, ε
′), it follows

ξ′ > sj − λF
j (sj , z) − ε′e > 0. Hence, ΛF

j (sj , z) ∈ int(F+) which is a contra-

diction with the fact that ΛF
j (sj , z) ∈ ∂Y F

j (z) and the claim is proved. Con-

sequently, ‖ΛF
j (sj , z)‖ ≤ 2‖sj‖. In an analogous manner, ΛF

0 (u, z) ∈ ∂(−F+)

implies |λF
0 (u, z)| ≤ ‖u‖. Let ((sj), z) ∈ (B(0, 2a) ∩ {e⊥F })J × ZD. From the

previous results and the fact that proje⊥F ω ≤ ‖ω‖, it follows that

|θF ((sj)j∈J , z)| ≤ 8#Ja+ ‖ω‖ < 4#Jr̄ + ‖ω‖ < λ̄

which ends the proof of the proposition.

The limit argument

We have a net of finite dimensional equilibria EF = ((xF
i )i∈I , (y

F
j )j∈J , p

F )

for every F ∈ F . Note that zF ∈ A(ω). The next lemma shows that we can
extend the price vector pF which corresponds to the marginal pricing rule in EF

to a continuous linear functional on the entire space L which is also a marginal
pricing rule.

Lemma 10 Let Yj be a production correspondence satisfying Assumption P.
For all F ∈ F , for all (ȳj , z) ∈ ∂Y F

j (z)× ZF and for all p ∈ MPj(ȳj , z), there

exists π ∈ N̂Yj(z)(ȳj) ∩ S such that π|F is colinear to p.

Proof First of all we show that intT̂Yj(z)(ȳj)∩F ⊂ intT̂Y F
j

(z)(ȳj). Unlike [18],

we cannot use hypertangency since T̂Yj(z)(ȳj) is not the Clarke’s tangent cone.

Let ν ∈ intT̂Yj(z)(yj) ∩ F , hence there is δ > 0 such that B(ν, δ) ⊂ T̂Yj(z)(ȳj).

Take ν′ ∈ B(ν, δ) ∩ F . Since ν′ ∈ T̂Yj(z)(ȳj) ∩ F , for every r > 0 there

exists ε > 0 associated to r
2 such that for all z′ ∈ B(z, ε) ∩ F I+J , for all

ȳ′j ∈ B(ȳj , ε) ∩ F ∩ Yj(z
′) and for all t ∈]0, ε[ there exists ξ ∈ L such that

‖ξ‖ < r
2 and ȳ′j + t(ν′ + ξ) ∈ Yj(z

′). By free-disposal ȳ′j + t(ν′ − r
2e) ∈ Yj(z

′).
Since ν′ and r

2e belong to F , one has that ȳ′j + t(ν′ − r
2e) ∈ Yj(z

′)∩F and thus

ν′ ∈ T̂Y F
j

(z)(ȳj), which implies that ν ∈
∫

T̂Y F
j

(z)(ȳj).

Let us consider the linear manifold N = {ν ∈ F : p(ν) = 0}. It is clear that
N ∩

∫

T̂Y F
j

(z)(ȳj) = ∅, whence N ∩
∫

T̂Yj(z)(ȳj) = ∅. By Hahn-Banach extension
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theorem there exists a closed manifold H = {ν ∈ L : π̂(ν) = 0} containing N
and not intersecting

∫

T̂Yj(z)(ȳj). Clearly, π̂ is continuous, colinear to p and it

belongs to N̂Yj(z)(ȳj).

The conclusion of this lemma provides a price in N̂Yj(z)(ȳj), which is smaller

than N̂Yj(z)(ȳj). Nevertheless, the forthcoming limit argument shows that the

equilibrium price is actually in N̂Yj(z)(ȳj) since the cone N̂Yj(z)(ȳj) does not
satisfy the necessary closedness property.

For all j ∈ J , let πF
j be an extension of pF in N̂Yj(z)(y

F
j ). The net

(zF , (πF
j )j∈J)F∈F ∈ A(ω)×

∏

j∈J

N̂Yj(z)(y
F
j ) ∩ S

has a limit point. Indeed, by Assumption (B), (zF )F∈F belongs to a
∏

LI+J τ -
compact set while (πF

j )j∈J belongs to a
∏

LJ,∗ σ∗-compact set from Alaoglu’s

Theorem. Hence, there exists a subnet (zF (γ), (π
F (γ)
j )j∈J)γ∈Γ which converges

to (z, (πj)j∈J).

On the other side, since the nets
(

〈pF (γ), y
F (γ)
j 〉

)

γ∈Γ
=

(

π
F (γ)
j (y

F (γ)
j )

)

γ∈Γ

and
(

〈pF (γ), x
F (γ)
i 〉

)

γ∈Γ
=

(

π
F (γ)
j

(

x
F (γ)
i

))

γ∈Γ
are bounded, we can assume

without any loss of generality that they converge in J and I .
We now prove that there is a marginal pricing equilibrium of the economy

E .

• Claim 1. π1 = π2 = . . . = πJ = π > 0

Proof Let x ∈ L. There exists F ∈ F such that x ∈ F . There ex-
ists γ0 ∈ Γ such that γ > γ0 implies F ⊂ F (γ). As for all j ∈ J ,

π
F (γ)
j|F (γ) = pF (γ), for γ > γ0 we obtain π

F (γ)
j|F (γ)(x) = pF (γ)(x) for all j ∈ J .

Taking limits we deduce π1(x) = π2(x) = . . . = πJ(x). Since x is an
arbitrary vector in L we get π1 = π2 = . . . = πJ . Consequently, we can
say that πj = π̄ for all j ∈ J

On the other hand, e ∈ intL+ and pF (γ)(e) = π
F (γ)
j (e) = 1 for all γ ∈ Γ.

Hence, πj(e) = π(e) > 0 and the claim is proved.

• Claim 2. z ∈
∏

i∈I Xi(z)×
∏

j∈J Yj(z) and
∑

i∈I xi =
∑

j∈J yj + ω

Proof This is a consequence of Assumptions C(1) and P(1)

• Claim 3. If x′
i ≻i,z xi, then π(x′

i) ≥ ri

(

π(ωi), limγ(π
F (γ)
j (y

F (γ)
j )j∈J)

)

for

all i ∈ I

Proof There exists a subspace F0 such that x′
i ∈ F0. There also exists γ0

and a positive sequence λF (γ) in [0,∞[ converging to 0 from above such
that for all γ > γ0, F0 ⊂ F (γ) and x′

i+δF (γ)e ∈ Xi(z
F (γ)) by Assumption
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C(2), whence x′
i + δF (γ)e ∈ Xi(z

F (γ)) ∩ F (γ). Since (xi, x
′
i, z) 6∈ Gi (see

Assumption C(4)), then there exists γ1 such that for all γ larger than γ0
and γ1, (x

F (γ)
i , x′

i+δF (γ)e, zF (γ)) 6∈ Gi and thus x′
i+δF (γ)e ≻i,zF (γ) x

F (γ)
i .

By the equilibrium conditions in the economy EF (γ) and the fact that

π
F (γ)
j|F (γ) = pF (γ), π

F (γ)
j (x′

i+δF (γ)e) > ri(π
F (γ)
j (ω), (π

F (γ)
j (y

F (γ)
j )j∈J). Since

x′
i + δF (γ)e converges to x′

i in the norm-topology and πj = π for all j, we
have

π(x′
i) ≥ ri(π̄(ω), limt(π

F (t)
j (y

F (t)
j )j∈J))

and the claim is proved.

• Claim 4. z ∈ A(ω) and π ∈
⋂

j∈J N̂Yj(z)(yj) ∩ S

Proof By Proposition 5, limπ
F (γ)
j (y

F (γ)
j ) ≥ πj(yj) for all j ∈ J . By the

above result and the local non satiation Assumption C(3), we deduce that
π(xi) = ri (π(ωi), (π(yj))j∈J) for all i ∈ I which, in turn, using the market

clearing condition, implies that limπ
F (γ)
j (y

F (γ)
j ) = π(yj). Hence again by

Proposition 5, z ∈ A(ω) and π ∈
⋂

j∈J N̂Yj(z)(yj) ∩ S.

• Claim 5. For all i ∈ I, xi is �i,z-maximal in the budget set.

Proof Since the income of each consumers is positive, preferences are
continuous and 0 ∈ Xi(z) for all i, we find by standards arguments that a
strictly preferred consumption with respect to xi is out of the budget set.

5 When L+ Has an Empty Interior

Now we address the case where L is a Banach lattice whose positive cone has an
empty interior. Nevertheless, we recall that we assume that e is a quasi-interior
point of L+, that is, L(e), the principal ideal generated by e, is norm dense
in L. As well known in the literature, a properness condition becomes a key
assumption in order to get a competitive equilibrium vector price. One of the
most general properness definitions are those of [23] pp. 582-83.

For the consumption side:
Let K be some order ideal of L. For all i ∈ I and all z ∈ LI+J , the

preference relation ≻i,z is said to be F -proper relative to K at x ∈ Xi(z)
if there exists a ‖ · ‖-open subset Vx of L, a lattice Zx ⊂ K which verifies
Zx +K+ ⊂ Zx and some subset Ax of L, radial at x, such that x ∈ V̄x ∩Zx and
∅ 6= Vx ∩ Zx ∩Ax ⊂ conv{x′ ∈ Xi(z) : x′ ≻i,z x}

As for the production sector, [23] proposed the following condition:

Let K be some order ideal of L. For all z ∈ Z, the technology Yj(z) is said
to be F -proper relative to y at Yj(z) if there exists a ‖ · ‖-open subset Vy of L,
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a lattice Zy ⊂ K verifying Zy −K+ ⊂ Zy and some subset Ay of L, radial at y,
such that y ∈ V̄y ∩ Zy and ∅ 6= Vy ∩ Zy ∩Ay ⊂ Yj(z)

These definitions look somewhat abstract since they encompass many proper-
ness conditions previously stated in the literature. We refer to [23] in order to
observe some economic meaning of these conditions.

From the last definition, we can derive a particular uniform condition which
is suitable for non-convex technologies:

Uniform e-properness relative to L(e)
We shall say that the technology Yj is uniformly proper relative to L(e)

if there exists a real number δj > 0, which generates the open cone at zero
Γj = {αξ : α > 0, ξ ∈ {−e}+B(0, δj)} such that for all z ∈ Z and all ȳj ∈ Yj(z),
({ȳj}+ Γj) ∩ L(e) ⊂ Yj(z). The element e is the proper vector.

In words, we are saying that if yj is producible and we add to it the quantity
e of inputs, then it is still producible if we add a vector which is small enough
and the resultant vector is order bounded by some multiple of e. Thus, marginal
rates of substitution with respect to e are bounded away from zero. In other
words, the trace on L(e) of the extended production set Yj(z) + Γj is included
in Yj(z). Notice that since B(0, δj) does not depend on yj our condition is
uniform instead of pointwise. By comparing with the F -properness condition of
[23] relative to yj ∈ Yj(z), note that in our caseK = Zyj

= L(e), Vyj
= {yj}+Γj

and Ayj
= L. We notice that if e ∈ intL+ then uniform properness technology

relative to L(e) follows directly from the free-disposal Assumption since there
would be a real number δj > 0, such that −e+B(0, δj) ⊂ −L+ and L(e) = L.

5.1 The main existence theorem

Theorem 11 Let E be a Banach lattice economy. There exists a vector (z̄, π̄)
in Z × N̂Yj(z)(yj) ∩ S which is a marginal pricing equilibrium if E satisfies As-
sumptions (C), (P), (B), (SA), (TC) and each technology is e-uniformly proper
with respect to L(e).

Theorem 11 extends Theorem 7 since we do not impose any interiority as-
sumption. Apart from the ordered preferences we have assumed, our result is
at the same level of generality than the other existence results for competitive
equilibrium whereas we encompass two major market imperfections, increasing
returns and externalities.

5.2 Proof

Let L(e) be the principal ideal generated by e. Hence the order interval [−e, e]
is radial in L(e) and then the gauge of the set [−e, e] induces a norm topology
on L(e). We call it the ‖ · ‖e-topology. Actually, [−e, e] is the closed unit ball
on L(e) while Be(0, 1) = {x ∈ L(e) : ‖x‖e < 1} is the open unit ball on L(e).
Let L(e)∗ denote the ‖ · ‖e-dual of L(e) and let ‖ · ‖∗e denote the dual norm on
L(e)∗.
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Let L(e)+ = L+ ∩L(e). Clearly L(e)+ is ‖ · ‖e-closed in L(e) and has a non-
empty ‖ · ‖e-interior which contains e. Obviously, ‖e‖e = 1. The ‖ · ‖e-topology
is finer than the topology of L(e) as a subspace of (L, ‖ · ‖) with the norm
denoted ‖ · ‖L(e). Let τe be the restriction to L(e) of the topology τ . Clearly τe
is included in the ‖ ·‖L(e)-topology, which itself is included in the ‖ ·‖e-topology.
Furthermore, it is straightforward to check that τe is a Hausdorff and locally
convex-solid topology such that all order intervals in L(e) are τe-compact.

Let Xe
i : L(e)I+JL(e)+ be the restricted consumption correspondence such

that for all z ∈ L(e)I+J , Xe
i (z) = Xi(z) ∩ L(e)+. Y e

j : L(e)I+JL(e) is the re-

stricted production correspondence such that for all z ∈ L(e)I+J , Y e
j (z) = Yj(z) ∩ L(e).

We also restrict properly the preference relation by �e
i,z for all z ∈ L(e)I+J . We

remark that ∂Y e
j (z) ⊂ ∂Yj(z)∩L(e), whence Z

e ⊂ Z and Ae(ω′) = A(ω′)∩Ze ⊂
A(ω′). The revenue functions (ri) are the same. p ∈ L(e)∗ is a ‖ · ‖e-continuous
linear functional on L(e). Finally, we have PEe = {(p, z) ∈ L(e)∗ × Ze : p ∈
∩j∈JN̂Y e

j
(z)(yj)} and for all z ∈ L(e)I+J , T̂Y e

j
(z)(yj) and N̂Y e

j
(z)(yj) are the

induced cones in L(e).

The economy Ee is fully described by ((Xe
i ,�

e
i,z, ri)i∈I , (Y

e
j )j∈J , ω).

We show that Theorem 7 applies for Ee. Clearly, for all z ∈ L(e)I+J the
‖ · ‖e-interior of Xe

i (z) is non-empty because of Assumption C(1) on solidity
condition and the fact that δe ∈ Xe

i (z) for all δ > 0. Xe
i satisfies the remaining

of Assumption C(1) and Assumption C(2) and since the ‖·‖e-topology is stronger
than the ‖ · ‖L(e)-topology, G

e
i (z) is ‖ · ‖e× τe×

∏

L(e)I+J τe-closed in L(e)2+I+J .

As for non satiation, note that it remains true in Ee since in Assumption C(3),
the improving consumption (x′

i) is chosen in L(e)I . The next lemma whose proof
is given in Appendix shows that Assumption SA holds true in the economy Ee

Lemma 12 The economy Ee satisfies Assumption (SA).

With respect to the production sector, it is not difficult to observe that
Assumption P is fully satisfied on every Y e

j . On the other hand, Assumption
B is automatically satisfied. Finally one easily checks that Assumption R holds
on Ee.

Consequently, all conditions of Theorem 7 are satisfied. Thus, there is an
equilibrium ((xi)i∈I , (yj)j∈J , p) ∈ Ze×N̂Y e

j
(z)(yj)∩S

e∗ . For the next two claims

we remark that T̂Yj(z)(yj) ∩ L(e) ⊂ T̂Y e
j
(z)(yj)

Proposition 13 There exists a price functional π ∈ L∗ such that π|L(e) = p

Proof Let δ > 0 be a real number such that δ < δj for all j ∈ J , where
δj are the parameters coming from uniform e-properness assumption relative
to L(e) on each production correspondence Yj . Since L is a locally convex
topological vector space, we can apply a suitable version of the Hahn-Banach
theorem (for instance, see [31], Theorem 4.2, p. 49) to show the existence of a
continuous linear functional π which extends p to the whole space L. So, we
have to show first that p is ‖ · ‖-continuous on L(e). We stress that accordingly
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to the above remark p is ‖·‖e-continuous. We now prove that the functional p is
bounded on B(0, δ) ∩ L(e). Since B(0, δ) is circled (then symmetric) it suffices
to prove it for any vector in B(0, δ) ∩ L(e)+. Let ξ ∈ B(0, δ) ∩ L(e)+. There
exists n0 ∈ such that ξ̄ = 1

n0
ξ ≤ e. ξ̄ ∈ L(e) ∩ B(0, δ

n0
). We claim − 1

n0
e + ξ̄

belongs to T̂Y e
j
(z)(yj). Indeed, recall that by Assumption TC, 0 ∈ T̂Yj(z)(yj) and

then in T̂Y e
j
(z)(yj). Thus, for ρ > 0, there exists η > 0 such that for all r > 0

there exist relative neighborhoods V e ∈ L(e)I+J (for V ∈∏
LI+J

τ
(z)) and

Ue ∈ L(e) (for U ∈τ (ȳj)) together with the real number ε > 0 such that for all
z′ ∈ ({z}+ρBe(0, 1)I+J)∩V e, for all ȳ′j ∈ ({yj}+ρBe(0, 1))∩Ue)∩Yj(z

′) and

for all t ∈]0, ε[, ȳ′j + t(η(yj − ȳ′j)− re) ∈ Yj(z
′). We note that −t 1

n0
e+ tξ̄ ∈ Γj

for t > 0 and then, by the e-uniform properness relative to L(e), it follows that
ȳ′j+t(η(yj−ȳ′j)−re)−t 1

n0
e+tξ̄ = ȳ′j+t(− e

n0
+ ξ̄+η(yj−ȳ′j)−re) ∈ Y (z′)∩L(e).

Thus we deduce that − 1
n0

e + ξ̄ belongs to T̂ ρ

Y e
j
(z)(yj) and since this is true for

all ρ > 0, we get that − 1
n0

e+ ξ̄ belongs to T̂Y e
j
(z)(yj).

Since p ∈ N̂Y e
j
(z)(yj) and p(e) = 1, it follows that p(ξ̄) ≤ 1

n0
. Hence,

p(ξ) = n0p(ξ̄) ≤ 1. We conclude that p is ‖ · ‖-continuous on L(e) and thus
there exists π ∈ L∗ which extends p.

Because of the free-disposal assumption and the fact that π(e) = p(e) = 1,
π > 0.

Proposition 14 π ∈ ∩j∈JN̂Yj(z)(yj).

Proof Let ν ∈ T̂Yj(z)(yj) ⊂ T̂ ρ

Yj(z)
(yj) for any j and ρ > 0. If ν ∈ L(e)

then π(ν) = p(ν) ≤ 0 and we are done. Let us suppose that ν 6∈ L(e). From
the definiton of T̂ ρ

Yj(z)
(yj) we know that there exists η > 0 such that for r > 0

arbitrary there exist neighborhoods V ∈∏
LI+J

τ
(z), U ∈τ (yj) and a real

number ε > 0 such that for all z′ ∈ ({z} + ρBe(0, 1)I+J) ∩ V ∩ L(e), for all
ȳ′j ∈ Be(yj , ρ) ∩ U ∩ L(e) ∩ Yj(z

′) and for all t ∈]0, ε[ there exists ξ ∈ r[−e, e]
such that ȳ′j + t(ν + η(yj − ȳ′j) + ξ) ∈ Y (z′).

Let us choose β > 0. Let δj > 0 be the parameter coming from uniform
e-properness relative to L(e). Since π is ‖·‖-continuous, there exists δ′ > 0 such
that B(0, δ′) ⊂ {x ∈ L : |π(x)| < β}. Let δ > 0 such that δ < βδj and δ < δ′.
Since L(e) is norm-dense in L there exists u ∈ B(0, δ) such that ν + u ∈ L(e).
Hence, ȳ′j+t(ν+η(yj−ȳ′j)+ξ)−tβe+tu = ȳ′j+t(ν−βe+u+η(yj−ȳ′j)+ξ) ∈ L(e).
By uniform e-properness, ȳ′j + t(ν − βe + u + η(yj − ȳ′j) + ξ) ∈ Yj(z

′) ∩ L(e).

This in turn implies ν − βe+ u ∈ T̂ ρ

Y e
j
(z)(yj) and since this is true for all ρ > 0

we have ν − βe + u ∈ T̂Y e
j
(z)(yj). Hence π(ν − βe + u) = p(ν − βe + u) ≤ 0,

and thus π(ν) ≤ 2β. This inequality is true for all β > 0 and j ∈ J and thus
Proposition14 is proved.

The last part of the proof consists in proving that every consumer is in
equilibrium according to her/his budget constraint and preferences. Let i ∈ I
and x′

i ∈ Xi(z) such that x′
i ≻i,z xi and π(x′

i) < π(xi). Let us note that
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(xi, x
′
i, z) 6∈ Gi. By Lemma 3 in [8], L(e)+ is norm-dense in L+ and thus one

can choose a parameter ε > 0 small enough such that there exists u ∈ B(0, ε),
x′
i + u ∈ L(e)+, (xi, x

′
i + u, z) 6∈ Gi by Assumption C(4) and π(x′

i + u) < π(xi).
Since there exists n0 ∈ N for which x′

i+u ≤ n0e we deduce by solidity of Xi(z)
(Assumption C(1)) and Assumption C(2) that x′

i + u ∈ Xi(z). Consequently,
π(x′

i + u) = p(x′
i + u) < π(xi) = p(xi), which contradicts the fact that xi is an

equilibrium consumption vector for i in Ee

6 Conclusions

In this paper, we provide a new definition for a tangent cone and its polar cone,
the normal cone, in Banach lattices. Basically, the key idea remains the same,
namely, defining a first order necessary condition for profit maximization but
taking into account the order relation through the use of order intervals. The
class of Banach lattices allows to consider most of the commodity spaces al-
ready considered in the literature beyond the Euclidean finite dimension spaces
and the space of essentially bounded, real valued and measurable functions.
Our definition fits with the previous concepts used in the literature; when the
production sets are smooth, when they are defined by a convex valued correspon-
dence, when the interior of the positive cone is nonempty, when the commodity
space is finite dimensional, when there is no externality. But the key property
of this normal cone is the fact that it is compatible with the existence of an
equilibrium under assumptions at the same level of generality as for a competi-
tive equilibrium. Note that we only assume uniform properness on technologies
and not on consumers which differs, substantially, from what has been done in
competitive production economies.

The next step for further research is the computation of this normal cone
when the production sets are defined: by several smooth inequalities represent-
ing different transformation functions; in particular spaces like L2 for model
with uncertainty with transformation functions representing the mean expecta-
tion for the outcome in the different states of the world; when the transformation
function is defined recursively for intertemporal models with infinite horizon.
Another line of research is the computation of the normal cone of a production
set, which is obtained from the aggregation of two productions sets having a
reciprocal external effect. Indeed, a standard way of fighting against the lack
of optimality coming from externalities is to merge the producers so that the
external effects are internalized. But, the global production set is likely non
convex even if we start with two producers defined by a convex-valued corre-
spondence. That is why it is important to compute the new normal cone to
define at least a necessary condition for optimality.
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Appendix

Proof of Proposition 2

We first recall the definition of the Clarke’s tangent and normal cones to the set
Yj(z) at the point ȳj

TYj(z)(ȳj) :=

{

ν ∈ L :
∀r > 0 ∃ ε > 0 : ∀y′j ∈ B(ȳj , ε) ∩ Yj(z), ∀t ∈]0, ε[
[y′j + tB(ν, r)] ∩ Y (z) 6= ∅

}

NYj(z)(ȳj) = [TYj(z)(ȳj)]
o = {p ∈ L∗ : p(ν) ≤ 0 ∀ν ∈ TYj(z)(ȳj)}

T̂Yj(z)(ȳj) is non-empty since the free-disposal condition implies that −L+ ⊂

T̂Yj(z)(ȳj). Now we show that T̂Yj(z)(ȳj) is a cone. Let ν ∈ T̂Yj(z)(ȳj) and τ > 0.

Let r > 0 and ε be the parameter associated by the definition of T̂Yj(z)(ȳj) to
r
τ
. Hence, for all z′ ∈ B(z, ε), for all ȳ′j ∈ B(ȳj , ε) ∩ Yj(z

′) and for all t ∈]0, ε[
there exists ξ ∈ B(0, r

τ
) such that ȳ′j + t(ν + ξ) ∈ Yj(z

′). Let ε′ strictly smaller
than ε and ε

τ
. Hence, for every z′ ∈ B(z, ε′) for every ȳ′j ∈ B(ȳj , ε

′) and for
every t ∈]0, ε′[, since tτ < ε, there exists ξ ∈ B(0, r

τ
) such that ȳ′j + τt(ν + ξ) =

ȳ′j + t(τν + τξ) ∈ Yj(z
′). As τξ ∈ B(0, r), we have proved that τν ∈ T̂Yj(z)(yj)

by associating to r the parameter ε′ and thus T̂Yj(z)(ȳj) is a cone.

We now show that T̂Yj(z)(ȳj) + T̂Yj(z)(ȳj) ⊂ T̂Yj(z)(ȳj). Let ν and ν′ be two

vectors in T̂Yj(z)(ȳj). For r > 0 there exist two non negative real numbers ε and

ε′ associated by the definition of T̂Yj(z)(ȳj) to
r
2 . Let ε1 > 0 smaller than ε and

ε′

1+‖ν‖+ r
2
. Hence, for all z′ ∈ B(z, ε1), for all ȳ

′
j ∈ B(ȳj , ε1)∩Yj(z

′) and for all t ∈

]0, ε1[, there exists ξ ∈ B(0, r
2 ) such that ȳ′′j = ȳ′j + t(ν+ξ) ∈ Yj(z

′). We remark
that ‖ȳ′′j −yj‖ ≤ ‖ȳ′j− ȳj‖+ t(‖ν‖+‖ξ‖) < ε1+ε1(‖ν‖+

r
2 ) ≤ ε′. Consequently,
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since ε1 < ε′, there exists ξ′ ∈ B(0, r
2 ) such that ȳ′′j + t(ν′ + ξ′) ∈ Yj(z

′). Hence,
ȳ′j + t(ν+ν′+ξ+ξ′) ∈ Yj(z

′) and ξ+ξ′ ∈ B(0, r). So ε1 associated to r satisfies

the defintion of T̂Yj(z)(ȳj) and we have shown that T̂Yj(z)(ȳj) is closed under
addition.

The proof of the second part is trivial given the definition of the Clarke’s
normal cone.

Proof of Proposition 3

1. T̂Yj(z)(ȳj) is non-empty by Assumption TC. We now prove that T̂Yj(z)(ȳj) is

a cone. Let ρ > 0, τ > 0 and ν ∈ ∩ρ>0T̂
ρ

Yj(z)
(ȳj) ⊂ T̂ ρ

Yj(z)
(ȳj). Then there exists

η > 0 such that for all r > 0 there exist V ∈∏
LI+J

τ
(z), U ∈τ (ȳj) and ε > 0

such that for all z′ ∈ B(z, ρ) ∩ V , for all ȳ′j ∈ B(ȳj , ρ) ∩ U ∩ Yj(z
′) and for all

t ∈]0, ε[ it follows that ȳ′j+t(ν+η(ȳj−ȳ′j)+ξ) ∈ Yj(z
′) for some ξ ∈ r[−e, e]. Let

η′ = τη. Let r > 0. Let V, U and ε the parameter and the open neighborhoods
associated for ν to r

τ
. Let ε′ = ε

τ
and note that τt ∈]0, ε[ is equivalent to

t ∈]0, ε′[. Hence, for all z′ ∈ B(z, ρ) ∩ V , for all ȳ′j ∈ B(ȳj + ρ) ∩ U ∩ Yj(z
′)

and for all τt ∈]0, ε[, there exists ξ ∈ r
τ
[−e, e] such that ȳ′j + τt(ν + η(ȳj −

ȳ′j) + ξ) = ȳ′j + t(τν + η′(ȳj − ȳ′j) + τξ) ∈ Yj(z
′) with τξ ∈ r[−e, e]. Hence,

τν ∈ T̂ ρ

Yj(z)
(ȳj). Since this holds for all ρ > 0, τν ∈ T̂Yj(z)(ȳj)

The normal cone N̂Yj(z)(ȳj) is weak*-closed since it is the intersection of

weak*-closed half spaces {π ∈ L∗ : π(ν) ≤ 0} over the ν in T̂ ρ

Yj(z)
(ȳj).

2. From the definition of T̂ , it is enough to prove that T̂ ρ

Yj(z)
(ȳj) ⊂ T̂Yj(z)(ȳj)

for all ρ > 0. Let ρ > 0 and ν ∈ T̂ ρ

Yj(z)
(ȳj). Consequently, there exists η > 0

such that for all r > 0 there exist V ∈∏
LI+J

τ
(z), U ∈τ (ȳj) and ε > 0

associated to r
2 . Let us fix ε′ > 0 strictly smaller than ε, r

2η , ρ and such that

B(z, ε′) ⊂ B(z, ρ) ∩ V and B(ȳj , ε
′) ⊂ B(ȳj , ρ) ∩ U . Thus, for all z′ ∈ B(z, ε′),

for all ȳ′j ∈ B(ȳj , ε
′) ∩ Yj(z

′) and for all t ∈]0, ε′[, we get the existence of a
vector ξ ∈ r

2 [−e, e] such that ȳ′j + t(ν + η(ȳj − ȳ′j) + ξ) ∈ Yj(z
′). Note that

‖η(ȳj − ȳ′j)‖ ≤ r
2 and thus ‖ξ′ = ξ + η(ȳj − ȳ′j)‖ ≤ r and ȳ′j + t(ν + ξ′) ∈ Yj(z

′).

Consequently, T̂ ρ

Yj(z)
(ȳj) ⊂ T̂Yj(z)(ȳj).

By polarity we obtain that N̂Yj(z)(ȳj) ⊂ N̂Yj(z)(ȳj).

3. T̂Yj(z)(ȳj) ⊂ TYj(z)(ȳj) since order intervals are norm-bounded thanks to
the fact that the norm is a lattice norm.

4. Since e ∈
∫

L+, as already mentioned in Section 3, without any loss
of generality, we choose the norm as the lattice norm associated to e. So
B̄(0, 1) = [−e, e] and we can replace it in the definition of T̂Yj(z)(ȳj), ξ ∈ r[−e, e]
by ξ ∈ B(0, r).

We show that T̂Yj(z)(ȳj) + T̂Yj(z)(ȳj) ⊂ T̂Yj(z)(ȳj) in order to prove the con-

vexity. Let ν and ν′ be in T̂Yj(z)(ȳj). Hence they belong to T̂ ρ

Yj(z)
(ȳj) for every

ρ > 0. Let us consider the set T̂ ρ+1
Yj(z)

(ȳj). There exist η and η′ such that for every
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r > 0 there exist neighborhoods ε, ε′, U, U ′, V and V ′ associated to the real num-
ber r

3 , such that for all z′ ∈ B(z, ρ+1)∩V , for all ȳ′j ∈ B(ȳj , ρ+1)∩U ∩Yj(z
′)

and for all t ∈]0, ε[, it follows that
[

{ȳ′j}+ tB(ν + η(ȳj − ȳ′j),
r
3 )
]

∩ Yj(z
′) 6= ∅

and for all z′ ∈ B(z, ρ + 1) ∩ V ′, for all ȳ′j ∈ B(ȳj , ρ+ 1) ∩ U ′ ∩ Yj(z
′) and all

t ∈]0, ε′[, [{ȳ′j}+ tB(ν + η′(ȳj − ȳ′j),
r
3 )] ∩ Yj(z

′) 6= ∅. There exist α ∈]0, 1[, V ′′

and U ′′ such that V ′′ + B(0, α) ⊂ V ∩ V ′ and U ′′ + B(0, α) ⊂ U ∩ U ′. Let
ε′′ > 0 strictly smaller than ε, ε′, r

η′(3‖ν‖+3ρη+r) and 3α
3‖ν‖+3ρη+r

. Hence, for

every z′ in B(z, ρ) ∩ V ′′ ⊂ B(z, ρ + 1) ∩ V , for every ȳ′j in B(y, ρ) ∩ U ′′ ∩
Yj(z

′)⊂ B(ȳj , ρ+ 1) ∩ U ∩ Yj(z
′) and for every t in ]0, ε′′[ ⊂ ]0, ε[, there exists ξ

in B(0, r
3 ) in such a way that the vector ζj = ȳ′j+ t(ν+η(ȳj− ȳ′j)+ξ) belongs to

Yj(z
′). From the definition of ε′′, one easily checks that ‖ζj − ȳ′j‖ < α < 1 and

η′‖ζj−ȳ′j‖ ≤ r
3 . So, ζj ∈ B(ȳj , ρ+1) and ‖t(ν+η(ȳj−ȳ′j)+ξ‖ < α. Consequently,

since ȳ′j ∈ U ′′ and z′ ∈ B(z, ρ+ 1) ∩ V ′, there exists ξ′ ∈ L such that ‖ξ′‖ < r
3

and ζ ′j = ζj + t(ν′+ η′(ȳj − ζj)+ ζ ′j) ∈ Yj(z
′). We note that the vector ζ ′j equals

ȳ′j + t(ν+ ν′+(η+ η′)(ȳj − ȳ′j)+ ξ+ ξ′+ η′(ȳ′j − ζj)) and ‖η′(ȳ′j − ζj)‖ is strictly

smaller than r
3 . Hence,

[

{ȳ′j}+ tB(ν + ν′ + (η + η′)(ȳj − ȳ′j), r)
]

∩ Yj(z
′) 6= ∅

and thus ν + ν′ ∈ T̂ ρ

Yj(z)
(ȳj). Since this is true for all ρ > 0, we conclude

that T̂Yj(z)(ȳj) is stable under sumation. Since T̂Yj(z)(ȳj) is a cone, we get it is
convex.

5. We first show that when L is finite dimensional T̂Yj(z)(ȳj) = T̂Yj(z)(ȳj).
Let r > 0 and ε associated with r

2 such that for all z′ ∈ B(z, ε), for all
ȳ′j ∈ B(ȳj , ε) ∩ Yj(z

′) and for all t ∈]0, ε[ there exists ξ ∈ B(0, r
2 ) such that

ȳ′j + t(ν + ξ) ∈ Yj(z
′). Let ρ > 0 and η > 0. Since in this case all topolo-

gies are equivalents and the interior of the positive cone is nonempty, we can
choose the closed unit ball equal to the order interval [−e, e]. We now choose
ε′ > 0 smaller than ε, r

2η and ρ. Let V = B(z, ε′) and U = B(ȳj , ε
′). Then,

for all ȳ′j ∈ U one has that ‖ξ − η(ȳj − ȳ′j)‖ < r for all ξ ∈ B(ν, r
2 ). This

implies that for all z′ ∈ V ∩ B(z, ρ), for all ȳ′j ∈ U ∩ B(ȳj , ρ) ∩ Yj(z
′) and

all t ∈]0, ε′[, there exists ξ ∈ B(0, r
2 ) such that ȳ′j + t(ν + ξ) ∈ Yj(z

′). But
ȳ′j+t(ν+ξ) = ȳ′j+t(ν+η(ȳj− ȳ′j)−η(ȳj− ȳ′j)+ξ). Since ξ−η(ȳj− ȳ′j) ∈ B(0, r),

ν ∈ T̂ ρ

Yj(z)
(ȳj), so ν ∈ T̂Yj(z)(ȳj) since this is true for all ρ > 0.

Let us now consider the following sequential characterization of T̂Yj(z)(ȳj)
when L is a finite dimensional vector space:

T̂Yj(z)(ȳj) :=

{

ν ∈ L :
∀zn → z, ∀ynj → ȳj such that ynj ∈ ∂Yj(z

n)
and ∀tn ↓ 0 ∃νn → ν such that ynj + tnνn ∈ Yj(z

n)

}

Let us recall the marginal pricing rule of [16] when the commodity space is
of finite dimension:

MP (ȳj , z) = conv







p ∈ S :
∃ zn ⊂L(I+J), zn → z,

∃ ȳnj ⊂L, ȳnj → ȳj , ȳnj ∈ ∂Yj(z
n)

∃ pn ⊂L, pn → p, pn ∈ NYj(zn)(ȳ
n
j ) ∩ S







To prove that N̂Yj(z)(ȳj)∩S = MP (ȳj , z), we first prove the following lemma:
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Lemma 15 (i) Let ν ∈ T̂Yj(z)(ȳj) and let r > 0 and ε > 0 as given by the

definition of T̂Yj(z)(ȳj). For all z′ ∈ B(z, ε) and all ȳ′j ∈ B(ȳj , ε) ∩ Yj(z
′),

ν − re ∈ T̂Yj(z′)(ȳ
′
j).

(ii) Let ν ∈ MP (ȳj , z)
◦, for all δ > 0, there exists ε > 0 such that for all

z′ ∈ B(z, ε) and all ȳ′j ∈ B(ȳj , ε) ∩ Yj(z
′), ν − δe ∈

∫

TYj(z′)(ȳ
′
j).

Proof. (i) Let ν ∈ T̂Y j(z)(ȳj). Let us choose ε
′ < ε such that B(z′, ε′) ⊂ B(z, ε)

and B(ȳ′j , ε
′) ⊂ B(ȳj , ε). Then, for all z′′ ∈ B(z′, ε′) for all ȳ′′j ∈ B(ȳ′j , ε

′) ∩
Yj(z

′′) and all t ∈ (0, ε′) there exists ξ ∈ B(0, r) such that ȳ′′j +t(ν+ξ) ∈ Yj(z
′′).

By the free disposal condition, ȳ′′j + t(ν − re) ∈ Y (z′′). From the definition of

T̂Yj(·), we have ν − re ∈ T̂Yj(z′)(ȳ
′
j).

(ii) Let ν ∈ MP (ȳj , z)
◦ and δ > 0. By contraposition, if for all ε > 0,

there exist vectors z′ ∈ B(z, ε) and ȳ′j ∈ B(ȳj , ε) ∩ Yj(z
′) such that ν − δe /∈

∫

TYj(z′)(ȳ
′
j), we can build a sequence (zn, ȳnj , p

n) converging to (z, ȳj , p) such
that for each n, ȳnj ∈ ∂Yj(z

n), pn ∈ NYj(zn)(ȳ
n
j ) ∩ S and 〈pn, ν − δe〉 ≥ 0.

So, at the limit, from the definition of MP (ȳj , z), we get p ∈ MP (ȳj , z) and
〈p, ν − δe〉 ≥ 0, which implies 〈p, ν〉 ≥ δ > 0, which contradicts ν ∈ MP (ȳj , z)

◦.

We now proceed with the proof. Let π ∈ MP (ȳj , z), then by Carathéodory’s
Theorem π =

∑

k∈K λkpk such that λk ≥ 0,
∑

k∈K λk = 1, and (pk) ∈ S for
all k. Hence, for all δ > 0, 〈π, ν − δe〉 =

∑

k∈L λk〈pk, ν − δe〉. By definition,

every pk is the limit of a sequence pnk ∈ NY (zn)(ȳ
n
j ) ∩ S ⊂ N̂Y (zn)(ȳ

n
j ) ∩ S from

Proposition 2. Let ν ∈ T̂Yj(z)(ȳj). For all n ≥ n0

∑

k∈K λk〈p
n
k , ν − δe〉 ≤ 0 by

the above lemma. Taking limits, one has 〈π, ν − δe〉 =
∑

k∈K λl〈pk, ν−δe〉 ≤ 0.
Hence, 〈π, ν〉 ≤ δ. Since this is true for all r > 0, we conclude that 〈π, ν〉 ≤ 0
and then π ∈ N̂Yj(z)(ȳj) ∩ S.

To prove the converse inclusion, we use the duality between closed convex
cones and we actually prove that MP (ȳj , z)

◦ ⊂ T̂Yj(z)(ȳj). Let ν ∈ MP (ȳj , z)
◦.

To prove ν ∈ T̂Yj(z)(ȳj), it suffices to show that ν − δe ∈ T̂Yj(z)(ȳj) for all
δ > 0. From the above lemma, for all δ > 0, there exists ε > 0 such that for
all z′ ∈ B(z, ε) and all ȳ′j ∈ B(ȳj , ε) ∩ Yj(z

′), ν − δe ∈
∫

TYj(z′)(ȳ
′
j). So, from

the characterisation of the interior of the Clarke’ tangent cone, there exists
τ(ȳ′j , z

′) > 0 such that for all t ∈ [0, τ(ȳ′j , z)], ȳ′j + t(ν − δe) ∈ Yj(z
′). Let

zn → z and ȳnj → ȳj such that ȳnj ∈ ∂Yj(z
n). For n large enough, zn ∈ B(z, ε)

and ȳnj ∈ B(ȳj , ε) ∩ Yj(z
′). So, we can build a sequence tn ↓ 0 such that

tn < τ(ȳnj , z
n). Hence, ȳnj + tn(ν − δe) ∈ Yj(z

n) for all n large enough, which

implies that ν − δe ∈ T̂Yj(z)(ȳj).
6. Let Yj be a convex valued correspondence. Let

PM(ȳj , z) = {π ∈ L∗ : π(ȳj) ≥ π(y′j)∀ y′j ∈ Yj(z)}

be the profit maximization behaviour. Let ζj − ȳj ∈ (Yj(z) − {ȳj}). Let
ρ > 0, η = 1, r > 0, 0 < δ < r, ε = 1 and U = L. By Assumption P(3),
there exists V ∈∏

LM
τ

(z) such that ζj − δe ∈ Yj(z
′) for all z′ ∈ V . Let

z′ ∈ B(z, ρ) ∩ V and ζj − δe ∈ Yj(z
′). Then, for ȳ′j ∈ B(ȳj , ρ) ∩ Yj(z

′) and
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t ∈]0, 1[, t(ζj − δe) + (1− t)ȳ′j ∈ Yj(z
′) since Yj(z

′) is convex. But this means
that ȳ′j + t(ζj − δe− ȳj +(ȳj − ȳ′j)) ∈ Yj(z

′). Since −δe ∈ r[−e, e] we have that

ζj − ȳj ∈ T̂ ρ

Yj(z)
(ȳj). Since this is true for all ρ > 0, ζj − ȳj ∈ T̂Yj(z)(ȳj) and thus

N̂Yj(z)(ȳj) ⊂ (Yj(z) − {ȳj})
◦ = PMj(ȳj , z). The converse is immediate since

PM(ȳj , z) = NYj(z)(ȳj) ⊂ N̂Yj(z)(ȳj) ⊂ N̂Yj(z)(ȳj).

Proof of Lemma 4

By Assumption SB (2), for all ζj ∈ ∂Yj(z), TYj(z)(ζj) = {ν ∈ L|∇1fj(ζj , z)(ν) ≤
0} is the Clarke’s tangent cone to Yj(z) at ζj ([14], Theorem 2.4.7, Corollary 2,
p. 57).

Since e is in the quasi-interior of L+ and∇1fj(ζj , z) ∈ L∗
+\{0},∇1fj(ζj , z)(e)

is strictly positive. Let ν ∈ L such that ∇1fj(ζj , z)(ν) ≤ 0, let ρ > 0, η = 1 and

r > 0. Let α > 0 such that α < rβ
2(2‖ν‖+4ρ+r) where β = ∇1fj(ζj , z)(e). Since

∇1 is continuous, there exist neighborhoods U ∈τ (ζj) and V ∈∏
LI+J

τ
(z)

such that ‖∇1fj(ζj , z)−∇1fj(ζ
′
j , z

′)‖ < α for all (ζ ′j , z
′) ∈ U × V .

Let U ′ = {ζ ′j ∈ L | ∇1fj(ζj , z)(ζ
′
j − ζj) < rβ

4 } be a weak neighborhood of
ζj . There exists another convex neighborhood U ′′ of ζj and δ > 0 such that
U ′′ + B(0, δ) ⊂ U ′ ∩ U . Let ε > 0 such that ε < 2δ

2(2‖ν‖+2ρ+r) . From the Mean

Value Theorem, for all z′ ∈ V ∩ B(z, ρ), for all ζ ′j ∈ U ′′ ∩ B(ζj , ρ) ∩ Yj(z
′) and

for all t ∈ (0, ε), there exists ζ ′′j in the segment [ζ ′j , ζ
′
j + t(ν + ζj − ζ ′j −

r
2e)] such

that

f(ζ ′j + t(ν + ζj − ζ ′j −
r

2
e), z′) = f(ζ ′j , z

′) + t∇1fj(ζ
′′
j , z

′)(ν + ζj − ζ ′j −
r

2
e)

From our choice of ε, it follows that ζ ′′j ∈ U , hence ‖∇1fj(ζ
′′
j , z

′)−∇1fj(ζj , z)‖ ≤
α. Since ∇1fj(ζ

′′
j , z

′)(ν + ζj − ζ ′j −
r
2e) = (∇1fj(ζ

′′
j , z

′)−∇1fj(ζj , z))(ν + ζj −
ζ ′j −

r
2e)+∇1fj(ζj , z)(ν+ ζj − ζ ′j −

r
2e), we deduce from the previous definitions

and inequalities that ∇1fj(ζ
′′
j , z

′)(ν + ζj − ζ ′j −
r
2e) < 0. Since f(ζ ′j , z

′) ≤ 0, we
get f(ζ ′j + t(ν + ζj − ζ ′j −

r
2e), z

′) ≤ 0, that is ζ ′j + t(ν + ζj − ζ ′j −
r
2e) ∈ Yj(z

′).

Since − r
2e ∈ [−re, re], we obtain that ν ∈ T̂ ρ

Yj(z)(ζj). Since this is true for all

ρ > 0, we have that ν ∈ T̂Yj(z)(ζj)

Proof of Lemma 8

• WSAF

Suppose that EF does no satisfy WSAF , that is, for all F , (pF , zF , λF ) in
PEF × [0, λ̄], (yFj )j∈J ∈ A(ω + λF e, zF ) and pF (

∑

j∈J yFj + ω + λF e) = 0. By

Lemma 10 there exists πF
j ∈ N̂Yj(z)(ȳj)∩ S such that πj|F = pF for all j. Since

yFj ∈ A(ω+ λ̄e, zF ), Assumption (B) says that the net (zF , (πF
j ), (π

F
j (y

F
j )), λ

F )

belongs to a weak-compact set such that the subnet (zF (γ), (πF (γ)), (π
F (γ)
j (y

F (γ)
j )), λF (γ))γ∈Γ

converges for the product topology to (z̄, (π̄j), lim(π
F (γ)
j (y

F (γ)
j )), λ̄)
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Since zF (γ) ∈ A(ω + λF (γ)e),
∑

j∈J y
F (γ)
j + ω + λF (γ)e ≥

∑

i∈I x
F (γ)
i , and

since L+ is τ -closed, it follows
∑

j∈J ȳj + ω + λes ≥
∑

i∈I x̄i. By Assump-
tions C(1) and P(1) we get z̄ ∈

∏

i∈I Xi(z̄) ×
∏

j∈J Yj(z̄) and by repeating
the arguments of Claim 1 in Section 4.2, π̄j = π̄ > 0 for all j ∈ J . Con-
sequently,

∑

j∈J π̄j(ȳj) + π̄j(ω) + λ ≥ 0. Given that pF (
∑

j∈J yFj + ω + λF e)

= πF
j (

∑

j∈J yFj + ω + λF e) = 0 for all F ∈ F and j ∈ J , we obtain that

limπ
F (γ)
j (y

F (γ)
j )+ π̄j(ω)+λ = 0. By Proposition 5 limπ

F (γ)
j (y

F (γ)
j ) ≥ π̄(ȳj), so

we deduce that π̄(
∑

j∈J ȳj + ω + λe) =
∑

j∈J limπ
F (γ)
j (y

F (γ)
j ) + π̄(ω) + λ = 0.

Hence, limπ
F (γ)
j (y

F (γ)
j ) = π̄(ȳj) for all j. From Proposition 5 b) π̄ ∈ N̂Yj(z̄)(ȳj)∩

S and by Assumption (WSA) we get π̄(
∑

j∈J ȳj+ω+λe) > 0, which contradicts
the above equality.

• (LNSF )

We show that there exists F̂ ∈ F such that for all F ∈ F with F̂ ⊂ F ,
the economy EF satisfies (LNSF ). We first prove that preferences are non-
satiated. Suppose, on the contrary, that for all F ∈ F preferences are not
satiated on the attainable allocations, i.e., for all F ∈ Fm there exists zF ∈
AF (ω) such that for some i0, there does not exist ξFi0 ∈ Xi0(z

F ) ∩ F such that

ξFi0 ≻F
i0,zF xF

i0
. Since AF (ω) ⊂ A(ω) for all F , there exists a subnet (zF (γ))γ∈Γ

converging weakly to z̄ = ((x̄i)i∈I , (ȳj)j∈J). From Assumptions C(1) and P(1)
we deduce that z̄ ∈

∏

i∈I Xi(z̄)×
∏

j∈J Yj(z̄) and from Assumption C(3) there
exists a vector (ξi)i∈I ∈

∏

i∈I Xi(z̄) such that ξi ≻i,z̄ x̄i for all i. Since the net

(zF (γ))γ∈Γ converges weakly to z̄ and because of strong lower hemi-continuity
of Xi (Assumption C(2)), for δ > 0, there exists γ0 ∈ Γ such that ξi+δe belongs
to Xi(z

F (γ)) for γ > γ0. Further, there exists F ∈ F such that ξi + δe ∈ F and
γ1 ∈ Γ such that F ⊂ F (γ) for all γ > γ1. Consequently, for all γ larger than
γ0 and γ1, ξi + δe ∈ Xi(z

F (γ)) ∩ F (γ) for all i ∈ I.
Note that (z̄, ξi + δe, x̄i) 6∈ Gi. Accordingly to Assumption C(4) there exists

γ2 ∈ Γ such that for all γ > γ2, (z
F (γ), ξi + δe, x

F (γ)
i ) 6∈ Gi. Consequently,

for γ large enough both ξi + δe and x
F (γ)
i belong to Xi(z

F (γ)) ∩ F (γ) and

ξ + δe ≻
F (γ)

i,zF (γ) x
F (γ)
i for all i ∈ I. This contradicts our previous claim that for

some i0, there does not exist ξFi0 ∈ Xi0(z
F ) ∩ F such that ξi0 ≻F

i0,zF xF
i0
.

Since preferences are also convex (Assumption C(3)) we deduce that they
are locally non-satiated.

Proof of Lemma 12

We want to prove that for all (p, z, t) ∈ Se×Ze×+, if (yj) ∈ Ae(ω+ te, z) it fol-
lows that p(

∑

j∈J yj+ω+te) > 0. By Propositions 13 and 14, there exists a con-
tinuous, positive, linear functional π which extends p to the whole space L and
π ∈ ∩j∈JN̂Yj(z)(yj). Hence, (π, z, t) ∈ S × Z×+ and (yj) ∈ A(ω + te, z). Since
∑

j∈J yj + ω + te belongs to L(e)+ we get by Assumption SA 0 < π(
∑

j∈J yj +
ω + te) = p(

∑

j∈J yj + ω + te). Hence, the Lemma is proved.
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