Universidad Nacional de San Martín Instituto de Investigaciones Biotecnológicas de la UNSAM

"Estudio del veneno de algunos escorpiones de importancia médica de la Argentina".

Tesis para optar al Título de Magíster en Microbiología Molecular

Autor: Adolfo Rafael de Roodt

Director: Oscar Daniel Salomón

Instituto Nacional de Producción de Biológicos Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán" A Carolina Juana Ingrid A Silvina A la memoria de mis padres, Juana y Adolfo

AGRADECIMIENTOS

Al Dr. Lourival D. Possani por entusiasmarme y convencerme que pesar de las dificultades biológicas y físicas, el estudio de los venenos de escorpiones es posible y que sus hallazgos pueden ser herramientas útiles para mejorar aspectos inherentes al conocimiento de la fisiopatología y el tratamiento del envenenamiento por estos animales.

Al Dr. Alfredo L. Chávez Haro, de la Cruz Roja de León Guanajuato, México, por transmitirme su pasión por estos arácnidos y lo referente al envenenamiento y tratamiento de humanos que sufren envenenamiento por los mismos.

A todos aquellos que colaboraron y colaboran en la provisión de telsones de T. trivittatus para mantener la producción del antiveneno específico. A la Médica Veterinaria Miriam Vucharchuk de Barrionuevo del Instituto de Animales Venenosos "J. W. Abalos" del Ministerio de Salud de Santiago del Estero. Al Lic. Gustavo Reati del Centro de Zoología aplicada de la Universidad Nacional de Córdoba. A los Dres. Juan Carlos Beltramino y Roberto Tomassone, por su siempre desinteresada colaboración en enviarnos ejemplares de T. trivittatus y a ellos y al Bioquímico Diego Mendicino por enviarnos telsones desecados de estos escorpiones, todos ellos del Hospital de Pediatría "O. Alassia" de la Ciudad de Santa Fe. A los dos primeros por compartir generosamente su experiencia en el tratamiento de pacientes envenenados por estos escorpiones. . A la Médica Veterinaria Silvina Saavedra del Ministerio de Salud de la Provincia de Entre Ríos, por el regular y desinteresado envío de ejemplares de T. trivittatus. Al Médico Veterinario Raúl A. López (Ministerio de Salud) y a la M. en C. Liliana Salas (Universidad de Catamarca) por su desinteresada provisión de ejemplares de T. trivittatus y T. confluens. Al Dr. Eduardo Bazán (Ministerio de Salud) y la Dra. María del Carmen Díaz Ariza (Universidad Barceló) de la provincia de La Rioja por su desinteresada provisión de ejemplares de T. trivittatus. A la Dra. Lidia E. Neder de Román y a Teresa Montero del Instituto de Biología de Altura de la Universidad Nacional de Jujuy por el envío de ejemplares de T. confluens. Al Médico Veterinario Enrique Trabattoni de la Facultad de Ciencias Veterinarias de Esperanza, Santa Fe, por permitirnos extraer veneno de ejemplares de T. trivittatus mantenidos en esa casa de estudios.

Al personal de Terapia Intensiva del Hospital "Vera Barros" de la provincia de La Rioja (Dr. Miguel Angel Romero y Dra. Karina Viñas) y del Hospital d de Pediatría "Eva Perón" de la provincia de Catamarca (Dras. Graciela Romero y Patricia Roja) por compartir sus experiencias y vivencias respecto a los casos de envenenamiento por escorpiones. A la Srta. Valeria del Valle Vega por brindarnos datos referentes a envenenamientos por *T. confluens* en la ciudad de Tucumán.

A el fallecido Ingeniero Químico Raúl Funes, del INPB-ANLIS "Dr. Carlos G. Malbrán" por permitirnos acceder a la base de datos del Programa Nacional de Ofidismo para analizar los datos referentes a los tratamientos por picadura de *Tityus*.

A la Dra. Elsa Segura por haber brindado la oportunidad al personal de la ANLIS de realizar una Maestría, hecho que para muchos de los agentes de esta institución hubiese estado fuera de alcance de no haberse realizado el convenio con la Universidad de San Martín a tales efectos.

Al Dr. Carlos H. Rizzi, por su interés en nuestro sector en el INPB, que durante su corta presencia como autoridad se tradujo no solo en buenos deseos sino en apoyo concreto para la realización de las tareas del sector, entre ellas las referidas al trabajo con escorpiones.

Al Biólogo Fredy Coronas del Instituto de Biotecnología de la Universidad Autónoma de México, por su colaboración en el aislamiento de componentes del veneno de *T. trivittatus* y al personal técnico del laboratorio del Dr. Possani por los trabajos de clonaje y estudios de caracterización bioquímica de las mismas.

Al personal técnico y profesional del Área Investigación y Desarrollo que durante estos años colaboró activamente en los trabajos relacionados con la obtención de veneno de escorpiones para mantener la producción de antivenenos y conocer más acerca de estos venenos y los escorpiones que los producen.

A todas las personas desinteresadas que en las diferentes provincias acercan escorpiones a los centros sanitarios, en conocimiento de su utilidad para la obtención del veneno para producir antiveneno.

ÍNDICE

<u>Capítulo</u>	<u>Páginas</u>
1.a Introducción	1 a 5
1.b Ubicación zoológica y biología de los escorpiones	6 a 22
1.c Cría, mantenimiento y transporte de escorpiones	23 a 35
1.d Obtención de veneno	36 a 43
1.e Componentes de los venenos de escorpiones	44 a 54
1.f Fisiopatología del envenenamiento por escorpiones	55 a 67
1.g Epidemiología y aspectos clínicos de los accidentes por <i>Tityus</i> en la Argentina	68 a 91
2. Características de <i>Tityus trivittatus</i> de la Argentina	92 a 101
3.a Toxicidad del veneno de escorpiones	102 a 114
3.b Lesiones producidas por el veneno de Tityus trivittatus	115 a 133
4. Características bioquímicas del veneno de <i>Tityus trivittatus</i> de la Argentina	134 a 151
5. Componentes aislados del veneno de <i>Tityus trivittatus</i>	152 a 175

6. Estudios inmunológicos	176 a 196
7. Comentarios finales	197 a 204
8. Conclusiones	205 a 207
9. Resumen	208 a 210
10. Bibliografía	211 a 228

TRABAJOS PUBLICADOS POR EL AUTOR EN AUTORÍA O COAUTORÍA CUYOS RESULTADOS SON EXPUESTOS EN ESTA TESIS

de Roodt A.R., Gimeno E., Portiansky E., Varni L., Dolab J.A., Segre L., Litwin S., Vidal J.C. (2001). A study on the experimental envenomation in mice with the venom of *Tityus trivitattus* Kraepelin 1898 (Scorpiones, Buthidae) captured in Argentina. *Journal of Natural Toxins*, 10(2):99-109.

Salomón O.D. & de Roodt A.R. (2001). Scorpions: spontaneous report in 2 reference centers in the city of Buenos Aires, 1997-2000. *Medicina* (B. Aires). 61(4):391-396.

de Roodt A.R., García S.I., Salomón O.D., Segre L., Dolab J.A., Funes R.F., de Titto E.H. (2003). Epidemiological and clinical aspects of scorpionism by *Tityus trivittatus* in Argentina. *Toxicon* 41(8): 971-977.

Coronas F.E., de Roodt A.R., Olamendi Portugal T., Zamudio F.Z., Batista C.B.F., Gómez Lagunas F., Posani L.D. (2003). Disulfide bridges and blockage of Shaker B K+ - channels by another butantoxin peptide purified from the Argentinean scorpion *Tityus trivittatus*. *Toxicon* 41(2):173-179.

Abdel-Mottaleb Y., Coronas F.V., de Roodt A.R., Possani L.D., Tytgat J. (2006). A novel toxin from the venom of the scorpion *Tityus trivittatus*, is the first member of a new α-KTX subfamily. *FEBS Letters* 580(2): 592-596.

Saracco A.S., de Roodt A.R., Cabrera A.M., García S.I. (2006). Escorpionismo. ATA Informa, *Boletín de la Asociación Toxicológica Argentina* 20 (71): 17-23.

de Roodt A.R., Lago N.R., Salomón O.D., Laskowicz R.D., Neder de Román L.E., López R.A., Montero T.E., Vega V. del V. (2009). A new venomous scorpion responsible for severe envenomation in Argentina: *Tityus confluens*. *Toxicon* 53(1): 1-8.

de Roodt A.R., Coronas F.I.V., Lago N., Gonzalez M.E., Laskowicz R.D., Beltramino J.C., Saavedra S., López R.A., Reati G., Vucharchuc M.G., Bazán E., Varni L., Salomon O.D., Possani L.D. (2009). General, biochemical and immunological characterization of the venom from the scorpion *Tityus trivittatus* of

Argentina. Aceptado para publicación en Toxicon. En prensa.

1.a-INTRODUCCIÓN

Los animales venenosos han despertado desde los inicios de la historia de la humanidad sentimientos de admiración, temor, respeto e intriga, rodeados de un aura mística que los ligó y liga a diferentes religiones, cultos y prácticas esotéricas (de Roodt 2002).

Si bien las serpientes son los representantes más "icónicos" y reconocidos entre estos grupos de animales en las civilizaciones occidentales judeo-cristianas, los aráncidos y los escorpiones también generan estos sentimientos. Dentro de las civilizaciones entre las que estos animales despertaron la imaginación y admiración, se encuentras las prehispánicas del actual México, la antigua de Egipto y las culturas mesopotámicas y greco-romanas (Chávez-Haro 2007).

Varias de estas civilizaciones, miraban con respeto y deferencia a los escorpiones como puede observarse en sus manifestaciones artísticas (**Figura 1.a.1** y **Figura 1.a.2**).

Figura 1.a.1

Figura 1.a.1. Hombre escorpión en la mitología sumeria. Estos personajes custodiaban el camino del Sol y advirtieron a Gilamesh sobre la dificultad de seguir ese camino, aunque lo dejaron pasar. Imagen tomada de : http://www.dearqueologia.com/gilgamesh/hombre escorpion.jpg

Figura 1.a.2

Figura 1.a.2. Hombre escorpión, mural de la civilización Olmeca. Se encuentra en el Centro Arqueológico de Cacaxtla y está reproducido en el Museo de Antropología de la Ciudad de México. Imagen: http://www.tlaxcala.gob.mx/tlaxcala/imagenes/prehispanico/hombre%20escorpion.jpg.

En el caso de los escorpiones estos sentimientos pueden ser originados por la potencia de su veneno, que puede paralizar y matar a animales mucho mayores que ellos, y producir en humano intensísimos dolores y en ocasiones provocar la muerte.

Los escorpiones son los animales terrestres más antiguos, descendiendo de antiguos animales marinos, los Eurípteridos, y adaptándose a la vida terrestre desde hace 300.000.000 de años. **Figuras 1.a.3 y 1.a.4.**

El nombre que se le da de escorpiones o alacranes tiene que ver con la raíz latina scorpĭo, -ōnis o del árabe clásico aqrab (Real Academia Española 2001), refiriéndose ambos nombres al mismo tipo de animal.

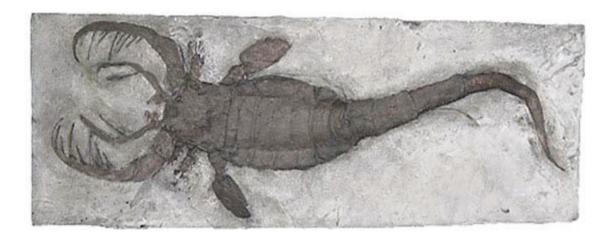

Si bien abarcan casi toda la superficie terrestre, a excepción de cumbres nevadas y casquetes polares, su picadura no siempre es de importancia médica. Pero algunas especies, en determinadas zonas del mundo, son responsables de muchas muertes humanas, especialmente de niños.

Figura 1.a.3

Figura 1.a.3. Fósil de euriptérido. Imagen del Departamento de Geologia y Geofísica de La Universidad de Yale. http://earth.geology.yale.edu/~deb47/index.cgi?page-selection=2

Figura 1.a.3

Figura 1.a.4. *Mixopterus*, euriptérdo del paleozoico. Imagen tomada de la Universidad de Indiana en Pensilvania. http://www.iup.edu/page.aspx?id=49183.

Sus venenos son mezclas complejas de péptidos con diferentes actividades biológicas, predominantemente neurotóxicos, que actúan sobre diferentes partes de canales iónicos, bloqueándolos o modulando su funcionamiento. Su función primaria es poder paralizar a las presas que constituirán su alimentación, y secundariamente su función es la defensa contra predadores.

En este aspecto, la acción del veneno que como se verá afecta especialmente el sistema cardiovascular y pulmonar, era bien conocida desde la antigüedad. La diosa egipcia Serquet, relacionada con el tratamiento y curación mágica de las picaduras por serpientes y escorpiones, era conocida en el Egipto antiguo como Serquet-hetu "la que hace que la garganta respire". Esto aludiría a los problemas que la picadura de escorpión puede producir en el sistema respiratorio y por otro lado a que estos signos se pueden revertir (Chávez-Haro, 2007).

Los venenos de estos animales son de profundo interés no sólo para las ciencias médicas sino para varios campos de la ciencia y tecnología, ya sea para la obtención de sondas para estudios neurofisiológicos, como así también para la obtención de compuestos de actividad insecticida, entre otros (Gordon y col. 2007; Gurevitz y col. 2007 a y b). De hecho, algunos componentes de estos venenos se han expresado en algunos virus, hongos, vegetales para poder, de esta forma combatir algunas plagas (Pang y col. 1992; Yao y col. 1996; Reguev y col. 2003; Wang y col. 2005; Wang y St. Leger 2007; Gurevitz y col. 2007; Wu y col. 2007 a y b).

Todos estos motivos, tornan de interés para la ciencia biomédica y para la biotecnología el estudio de veneno de estos arácnidos, pero en especial los accidentes letales ocurridos en nuestro país que hacen que el estudio de estos en Argentina ya no sea sólo de interés académico sino una necesidad sanitaria.

Desde el año 2000 hasta la fecha han muerto más de 19 niños por la picadura de escorpiones, siendo que en el período 1993-1999 sólo se habían registrado tres casos fatales, lo que significa un aumento de la mortalidad registrada de más de seis veces.

Por este motivo, los elementos brindados en esta tesis, son un aporte para el estudio de este tipo de venenos, para comprender mejor la fisiopatología de estos envenenamientos y la eficacia de los tratamientos con antivenenos. Esto es importante considerando que, si bien el envenenamiento por estos animales se conoce desde 1930 (Maury 1997), hasta los trabajos iniciales de nuestro grupo nunca se había procedido al estudio bioquímico, inmunoquímico, toxicológico o epidemiológico del veneno de escorpiones de importancia médica en la Argentina (de Roodt y col. 2001; Salomón y

de Roodt 2001; Coronas y col. 2003; de Roodt y col., 2003; Abdel-Mottaleb y col. 2006; Saracco y col. 2006; de Roodt y col. 2009). Precisamente, por esta falta de referencias en la literatura, o su existencia dispersa y en publicaciones de difícil acceso, en el presente trabajo se ha optado por una introducción integral (capítulos 1b-1g) para que, junto al aporte experimental con nuevos conocimientos en el tema (capítulos 2-6), pueda ser utilizada también como un compendio monográfico con capítulos de lectura individual, faltante en nuestro medio.

1.b UBICACIÓN ZOOLÓGICA Y BIOLOGÍA DE LOS ESCORPIONES.

1.b.a. CLASIFICACIÓN ZOOLÓGICA

Los escorpiones o alacranes (nombre vulgar que se le da indistintamente sin características discriminantes biológicas constantes) son artrópodos quelicerados (**Fig. 1.b.a.1**)

Figura 1.b.a.1

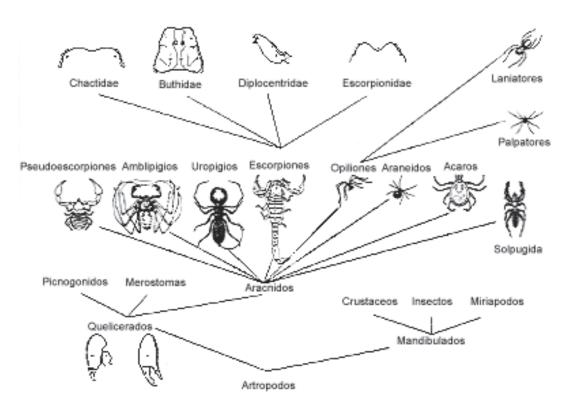
Phylum Artrhopoda

- > Mandibulata
 - > Myriapoda
 - > Hexapoda (insectos)
 - Crustacea
- ➤ Subphylum Chelicerata (Quelicerados)

Clase Arácnida

- Orden Araneida (arañas)
- Orden Scorpionida (escorpiones)
- Orden Pseudoescorpionida (pseudoescorpiones)
- Orden Opilionida (opiliones)
- Orden Solifuga (solífugos)

Clase Acarina


Clase Pycnogonida

Clase Merostomata (Eurypterida y Xiphosura)

Los escorpiones son artrópodos que pertenecen a la clase arácnida (**Fig. 1.b.a.2**), en la que también se encuentran las arañas (**Fig. 1.b.a.3**), opiliones (**Fig. 1.b.a.4**), pseudoescorpiones (**Fig. 1.b.a.5**) y solífugos (**Fig. 1.b.a.6**), estando a su vez emparentados con los ácaros y garrapatas, entre otros. Se han descripto entre 1500-2000

escorpiones pero sólo alrededor de 80 de estos serían peligrosos para el hombre, de los cuales 25-30 especies han causado muertes en humanos (**Buchler-Buckley**, **1971**). Todas las especies de importancia médica pertenecen a la familia Buthidae.

Figura 1.b.a.2

Figura 1.b.a.2. Clasificación zoológica de los escorpiones. Fuente: Universidad Central de Venezuela. http://caibco.ucv.ve/escorpio/biologia.htm.

Figura 1.b.a.3. Araña

Latrodectus ("viuda negra"). Foto del autor.

Figura 1.b.a.4. Opilion

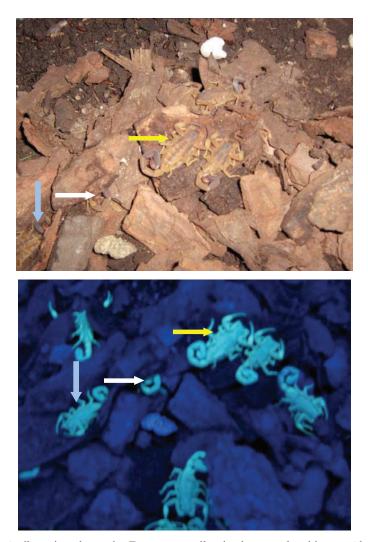
Figura 1.b.a.5. Solífugo

Figura 1.b.a.6. Pseudoescorpión

Los escorpiones descenderían de los Eurípteridos, animales marinos prehistóricos que presentaban ciertos parecido con los actuales escorpiones (Figura 1.a.

3 y 4), y habrían ganado la tierra hace 300.000.000 años, siendo los primeros animales adaptados a la vida terrestre.

1.b.b. CARACTERÍSTICAS BIOLÓGICAS


Los escorpiones habitan casi toda la superficie del globo terrestre, con excepción de los casquetes polares y las altas cumbre nevadas. Se los encuentra mayormente en zonas tropicales y subtropicales, aunque también se los puede encontrar en zonas áridas y en zonas húmedas como cuevas y selvas.

Si bien no es una ley biológica estricta, los escorpiones de zonas selvático o boscosas tropicales suelen ser de mayor tamaño que los de zonas desérticas o templadas; apese a sus grandes dimensiones en general no representan un problema médico para el hombre. Si bien estos artrópodos de mayor porte poseen veneno, como todos los escorpiones, éste no contendría péptidos capaces de producir toxicidad en el humano. Tampoco los escorpiones de gran tamaño, con algunas excepciones, suelen utilizar su veneno para la caza, sino que se bastan con capturar la presa con sus pinzas.

Son animales usualmente solitarios si bien ocasionalmente pueden estar en grupos. En cautividad algunas especies son difíciles de mantener en el mismo recinto debido al canibalismo, sin embargo con buena alimentación y espacio adecuado pueden llegar a mantenerse en grupos sin un índice de canibalismo alto.

Salen a cazar al crepúsculo o a la noche. Por sus características de fluorescencia ante la luz ultravioleta, mediante su utilización es fácil detectarlos durante la noche en los diferentes hábitats. La fluorescencia directa utilizando tubos de luz U.V. comerciales sobre *Tityus trivittatus*, si bien se observan de color azulado (**Figura 1.b.b.1**), en ocasiones los muestra de color verdoso, a diferencia de muchas fotos de fluorescencia de escorpiones que los muestran siempre de color azulado. Cuando se los ilumina a través de vidrio, se los observa de color algo azulado.

Figura 1.b.b.1

Figura 1.b.b.1. Arriba, ejemplares de *T. trivittatus* iluminados con luz blanca. Abajo, los mismos escorpiones iluminados con luz ultravioleta comercial de uso doméstico Obsérvese la fuerte fluorescencia que los permite identificar perfectamente del medio circundante. Las flechas indican con el mismo color a los mismos escorpiones bajo las diferentes luces. Fotos del autor.

Entre sus sentidos específicos se destacan varios pares de ojos, los cuales captarían diferentes longitudes de onda (**Figura 1.b.b.2**), y células fotosensibles en la cola.

Figura 1.b.b.2 ojos de escorpiones.

En su cuerpo poseen pelos sensitivos (tricobotrios) que les permiten captar corrientes de aire muy ligeras, brindándole información sobre el ambiente que los rodea y del movimiento que se realiza en torno a ellos (**Fig. 1.b.b3**).

Fig. 1.b.b3. Tricobotrio

Poseen en la cara ventral, en relación al esternón, estructuras llamadas peines o pectenes, que les son de utilidad para brindar información sobre las superficies en las que caminan.

Algunos escorpiones emiten sonidos por frotación de segmentos corporales (estridulación).

Su tiempo de vida es de 2 a 10 años, si bien se comenta que algunas especies pueden vivir hasta 25 años. En la experiencia de nuestro laboratorio, a medida que se mejora el ambiente y la alimentación de los ejemplares de *Tityus trivittatus* la longevidad de estos aumenta. Inicialmente no sobrevivían más de unos pocos meses, aún sin exigencias de extracción de veneno, llegándose a la actualidad a más de 6 meses de sobrevida aún extrayéndoles veneno por estimulación eléctrica.

Una característica importante de estos animales es que son vivíparos. La hembra pare sus crías, las que emergen de sus aberturas genitales todavía envueltas en membranas fetales (**Fig. 1.b.b.4**).

Fig. 1.b.b.4

Fig. 1.b.b.4.a. Vista lateral de una cría recién salida de *Tityus trivittatus* con restos de membranas fetales. Obsérvese el metasoma (cola) a la derecha con su extremo todavía recubierto por membranas. Foto del autor.

Fig. 1.b.b.4.b. Vista dorsal de una cría recién nacida de *Tityus trivittatus* Obsérvense los ojos, pedipalpos (pinzas), el metasoma (cola) y las tres líneas oscuras longitudinales características de esta especie. Foto del autor.

Fig. 1.b.b.4.c. Vista ventral de una cría recién nacida de *Tityus trivittatus*, mostrando el metasoma (cola) a la izquierda, las patas en el centro, los pedipalpos (pinzas) y los quelíceros (derecha). Foto del autor.

Las crías al nacer son colocadas por la madre en el dorso (**Figs. 1.b.b.5**), en el que permanecen varias semanas (hasta la segunda muda) alimentándose de productos de descamación del cuerpo materno y restos de membranas, hasta que descienden para alimentarse solos y realizar una vida libre.

Fig. 1.b.b.5.a

Dos hembras de *Tityus trivittatus* pariendo. Se observan crías recién nacidas en la cara ventral de la hembra de la izquierda y otra que está siendo colocada sobre el dorso materno en la de la derecha. Foto del autor.

Fig. 1.b.b.5.b

Figura 1.b.b.5.b. Obsérvense cómo la hembra conduce al conjunto de crías recién nacidas hacia su dorso. Foto del autor.

Fig. 1.b.b.5.c

Figura 1.b.b.5.b. *Tityus trivittatus* con crías de más de una semana en el dorso. Las crías durante ese período se alimentan de restos de membranas y descamaciones del dorso de la madre. Tras la segunda muda descienden y comienzan una vida independiente. Fotos del autor.

Fig. 1.b.b.5.d

Figura 1.b.b.5.d. Crías de varias semanas de *Tityus trivittatus* en el dorso de la madre, casi a punto de descender de este para comenzar una vida independiente. Fotos del autor.

Tienen costumbres muy sedentarias, suelen pasar horas escondidos bajo troncos, piedras, ladrillos, rocas, corteza de árboles. La mayoría son de hábitos nocturnos, y se estima que pasan el 92-97% de su vida en sus refugios. Sólo se movilizan para capturar alimentos y para reproducirse, si bien muchas especies tienen potencial partenogenético (entre ellas los *Tityus*). Recientemente se ha confirmado la capacidad partenogenética de *T. trivittatus* (**Toscano-Gadea, 2004**).

En las especies donde la reproducción se produce por cópula de macho y hembra, puede verse un cortejo que se manifiesta como una "danza" en la cual el macho toma a la hembra con sus pedipalpos. Esta característica y la adaptación que se produjo en estos animales, permite que se pueda identificar a machos respecto a hembras por modificaciones en los pedipalpos, adaptadas a facilitar la prensión de las hembras. El macho deposita una bolsa conteniendo espermatozoides que produce por su apertura genital, y coloca a la hembra de manera tal que esta pueda recoger el semen con su genitalia, para que pase a la espermateca y se produzca la fecundación (Peretti 1991; Peretti 1992 a y b; Peretti 1997 a y b; Castelvetri y Peretti 1999; Peretti y Carrera 2005).

Fig. 1.b.b.5.e.

Danza nupcial de una pareja de Zabius fuscus (Scorpiones: Buthidae).

Los escorpiones pueden pasar largos períodos sin agua y algunos resistirían más de un año sin comer. En nuestra experiencia podemos afirmar que ejemplares de *T. trivittatus* soportan hasta 6 meses de ayuno.

Se menciona que algunos escorpiones resistirían temperaturas por debajo del punto de congelación y podrían sobrevivir bajo el agua uno o dos días. Si bien no hemos realizado ningún diseño experimental para determinar la resistencia de este tipo, observamos anecdóticamente la sobrevida bajo el agua durante más de una hora, de un ejemplar de *Bothriurus bonariensis*.

Los escorpiones peligrosos para el hombre pertenecen a la familia Buthiidae y comprenden aproximadamente 500 especies con varios géneros, entre los que se pueden mencionar los géneros *Androctonus*, *Leiurus*, *Buthus*, *Buthotus* y *Heteromerus* que habitan en el viejo mundo, mayormente en el norte de África, Oriente Medio e India. En Sudáfrica se describe *Parabuthus*. El Género *Centruroides* se distribuye en el sur de Norteamérica y Centroamérica y el género *Tityus* en Sudamérica.

1-b.c. MORFOLOGÍA

El cuerpo de los escorpiones está compuesto por varias partes (**Fig. 1.b.c.1**), encontrándose en la anterior, llamada Prosoma (**Fig. 1.b.c.2**), los órganos de la visión, los pedipalpos (**Fig. 1.b.c.3**) ("pinzas"), la entrada al tubo digestivo y los quelíceros. La parte posterior del cuerpo, llamada Opistosoma, se puede dividir en un segmento anterior, el Mesosoma (**Fig. 1.b.c.4**) dividido en siete porciones llamadas tergitos. En la

cara ventral de estos se encuentran los espiráculos respiratorios. La parte final del cuerpo y por lo tanto del Opistosoma, se denomina Metasoma ("cola"), y está compuesta por cinco segmentos que finalizan en un segmento con forma de ampolla en la que se encuentran las glándulas productoras de veneno y la que posee el acúleo ("aguijón") y que se denomina telson.

Las figuras de este punto fueron obtenidas de la Universidad Central de Venezuela (Fuente: Universidad Central de Venezuela. http://caibco.ucv.ve/escorpio/biologia.htm).

Figura 1.b.c.1

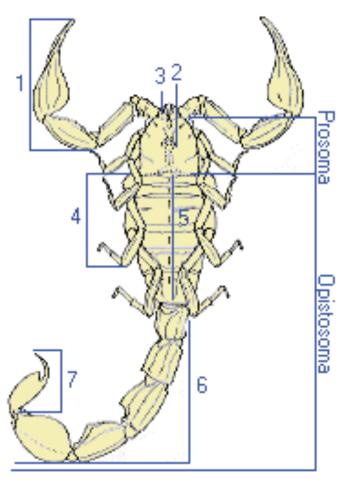


Figura 1.b.c.1. Cuerpo tipo de un escorpión. 1- pedipalpos (pinzas), 2- ojos, 3- quelíceros, 4- tergitos, 5-mesosoma, 6- metasoma (cola), 7 telson ("aguijón").

En este punto, es necesario ya mencionar que en este manuscrito, a la introducción del acúleo o aguijón de estos animales se la mencionará como "picadura". Si bien este término no sería el más adecuado ya que estos animales no poseen "pico", es el más generalizado y fácilmente entendible. Tal vez el término "aculeazo" o

"aculeada" o "aguijonazo" o "aguijoneada" sean más correctos, pero hasta el momento no se utilizan, al menos en la mayoría de la bibliografía médica y toxinológica disponible.

En los escorpiones los pedipalpos (**Fig. 1.b.c.3**) están modificados para la prensión, se los llama vulgarmente "pinzas" ya que cumplen tal función, a diferencia de los de las arañas que tienen funciones táctiles y de reproducción (órgano copulador de los machos de las arañas). Los escorpiones los utilizan para la presión y su única relación con la reproducción es cuando se produce la "danza nupcial" entre macho y hembra. Como las patas de estos animales, los pedipalpos poseen los segmentos comunes a los miembros de los artrópodos quelicerados.

Figura 1.b.c.2

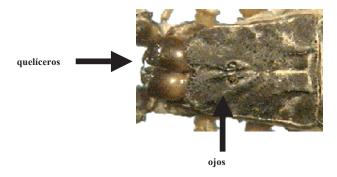
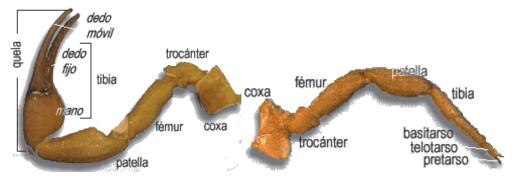
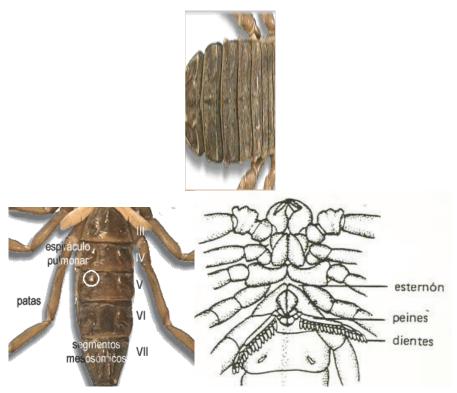



Figura 1.b.c.2. Prosoma de un ejemplar de Tityus indicando los quelíceros y los ojos.



A la derecha se observa el detalle de las partes del pedipalpo de una especie de *Tityus* y a la derecha el detalle de una de las patas del escorpión. Pueden observarse los mismo segmentos con la diferencia en el pedipalpo en la tibia se modificó dando lugar a la presencia de la quela (pinza) formada por dos dedos (uno móvil y uno fijo).

Las patas poseen ganchos que les permiten ascender sobre superficies rugosas, pero ineficaces para que puedan subir en superficies lisas verticales. De ahí lo apropiado de la sugerencia de colocar frascos de vidrio en las patas de las cunas para impedir el ascenso de los mismos en las zonas de alta densidad de escorpiones y evitar el envenenamiento por la picadura accidental.

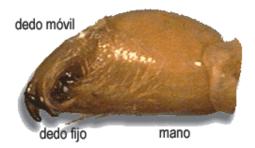

Figura 1.b.c.4

Figura 1.b.c.4. A la izquierda se observa la parte dorsal del mesosoma mostrando el detalle de los tergitos. Al centro se observa el detalle ventral del mesosoma indicando los espiráculos respiratorios (espiráculo pulmonar). En este caso en la parte superior se llegan a ver los peines o pectenes. A la derecha se muestra un esquema que permite ver el esternón y los peines, por sobre el primer segmento del mesosoma.

Los quelíceros (**Fig. 1.b.c.5**), son elementos ubicados en la parte anterior del tubo digestivo y que cumplen la función de desmenuzar el alimento que ingieren estos animales, el cual es previamente macerado por secreciones digestivas del mismo alacrán. A diferencia de lo que sucede con las arañas en las que los quelíceros sirven también para la inoculación de veneno (por lo que son diferentes anatómicamente.

Figura 1.b.c.5

Figura 1.b.c.5. Quelícero de escorpión. Se muestra un quelícero lateralmente indicando los dos dedos o uñas que le permiten desmenuzar su alimento. Uno de ellos es fijo y el otro móvil.

1.b.d OTROS BUTHIDAE DE LA ARGENTINA

Los ecorpiones de importancia médica para los humanos a nivel mundial pertenecen a la Familia Buthidae.

En la Argentina esta está representada por tres Géneros: *Tityus* (Koch 1836) con seis especies, *Zabius* (Thorel 1894) con dos especies *Z. fuscus* y *Z. birabeni* y *Ananteris* (Thorel 1891) con una especie : *A. balzani* (Figuras 1.b.d.1 y 1.b.d.2). No hay datos sobre la toxicidad de los *Ananteris* o los *Zabius*.

Figura 1.b.d.1. Ejemplar de Zabius

Figura 1.b.d.1. Ejemplar de *Zabius fuscus*. Estos Buthidae no poseen apófisis subaculear a diferencia de los *Tityus* y *Ananteris*.

Figura 1.b.d.2 Ejemplar de Ananteris

Figura 1.b.d.2 Ejemplar de *Ananteris* sp. Imagen obtenida de www.ub.ntnu.no/scorpion-files/gallery.php.

En la Argentina tenemos 6 especies de *Tityus* que son *T. trivittatus*, *T. confluens*, *T. bahiensis* (los tres de importancia médica), *T. argentinus*, *T. uruguayensis* y *T. paraguayensis*. No hay datos de toxicidad de estos tres últimos.

En la Argentina los *Tityus* se distribuyen principalmente en las provincias del centro y norte del país. En la figura **1.b.d.3** se indica la descripción de las diferentes especies de *Tityus* en las diferentes provincias. La información sobre la distribución de estos suele ser fragmentaria dada en muchas ocasiones la falta de contacto entre quienes trabajan en temas relacionados lo que en ocasiones pueda hacer que estas sean contradictorias.

Figura 1.b.d.3. Distribución de los *Tityus* en las diferentes provincias

1.c- CRÍA, MANTENIMIENTO Y TRANSPORTE DE ESCORPIONES

1.c.1- INTRODUCCIÓN

La obtención de veneno sólo es posible por la previa captura de los alacranes, y el mantenimiento de la producción del mismo sólo es posible cuando se pueden mantener las colonias en buen estado.

Aunque estas tareas no sean en sí el tema de esta tesis, sin las mismas hubiera sido imposible su realización. Lamentablemente existe muy poca información sobre la cría y mantenimiento de escorpiones, y ninguna sobre la cría o el mantenimiento de *Tityus trivittatus* o de otras de las especies de escorpiones venenosos de la Argentina. Por ello, como ya se explicó, se incluyó este capítulo dado que, independientemente de los datos bioquímicos, inmunológicos o toxicológicos que de esta se puedan obtener, el lector podrá adquirir algunos elementos y experiencia indispensable para poder trabajar con estos animales tanto para la realización de estudios biológicos como para el estudio de su veneno.

Los escorpiones pueden vivir en cautividad, llegando algunas especies de ellos incluso a utilizarse como animales de "mascota" u "ornamentales". Sin embargo, el mantenimiento en cautividad de escorpiones de importancia médica muchas veces es dificultoso, por factores inherentes a los escorpiones y por factores ambientales. Entre los primeros, hay muchos factores desconocidos, por lo que aún brindándole a los animales las condiciones teóricamente ideales, algunas especies son difíciles de mantener en cautividad por períodos de tiempo prolongados. De hecho, no existe en el mundo un escorpionario dedicado a la extracción de veneno que no dependa al menos de capturas periódicas para mantener la población de escorpiones. También entre los factores que influyen en el éxito del proceso puede mencionarse el estado de los mismos al ser capturados, ya que los artrópodos no son inmunes a enfermedades o, lo más frecuente, a traumatismos producidos al momento de la captura, estados de intoxicación por la acción directa de insecticidas, o indirecta por la ingesta de otros artrópodos con contenido de insecticidas en sus tejidos.

Entre los factores ambientales pueden considerarse la temperatura correcta, la humedad adecuada, el manejo de diferentes tipos de sustratos, el tipo de alimentación brindada, la disponibilidad de agua, el tipo de alojamiento brindado (individual o colectivo, **Figura 1.c.1.a**) y la densidad de animales en relación a estos factores.

De las especies de escorpiones americanos hay diferentes experiencias, todas válidas, aunque en algunos casos algo contradictorias, en especial respecto a la conveniencia de mantener a los animales utilizados para la extracción de veneno en cajas individuales o en forma colectiva. El mantenimiento individual es útil para evitar canibalismo y para tener un control mayor respecto a cada animal, sobre todo en lo referente a la alimentación y extracción de veneno. El mantenimiento de los alacranes de forma colectiva no brinda datos individuales sobre los escorpiones, pero es más económica y en nuestra experiencia no afecta el tiempo de sobrevida de los animales capturados. En este aspecto si bien el canibalismo es frecuente en estos animales, este es mínimo si la densidad de escorpiones no es muy alta y si tienen alimento adecuado a disposición. Por ejemplo, en el Instituto Butantan de San Pablo, Brasil, mantienen a los Tityus en forma colectiva con muy buen resultado, mientras que en el IVIC de Caracas, Venezuela, se crían de forma individual para evitar problemas de canibalismo. Por otro lado, en México a escorpiones del género Centruroides, en uno de lo mayores centros de acopio de escorpiones (Birmex S.A. de C.V.) se los mantiene en forma colectiva, mientras que en el aracnario del Instituto de Biotecnología de la Universidad Autónoma de México "María Rosa de Silanes" se los mantiene en forma individual o en grupos pequeños.

Figura 1.c.1.a

Caja ambientada para alojar escorpiones.

Hembra con crías en un envase individual.

1.c.2- ALIMENTACIÓN

Respecto a la alimentación, esta puede ser muy variada, pero algunas especies de escorpiones tienen mayor preferencia por ciertos alimentos, no siempre disponibles o de precio accesible. Esta puede ser de animales vivos, si bien en algunos casos los escorpiones aceptan alimento "muerto" como por ejemplo trozos de carne o hígado, o artrópodos recientemente muertos (**Figura 1.c.2.a**).

Figura 1.c.2.a

Figura 1.c.2.a. Ejemplar de *T. trivittatus* comiendo un ejemplar de *Latrodectus* spp previamente descongelado al cual se le extrajeron sus aparatos venenosos.

En el caso de la alimentación con artrópodos es conveniente brindarles alimento que no provoquen estrés a los animales haciéndoles gastar veneno. Para estos dos objetivos es muy adecuada la utilización de artrópodos pequeños, tales como crías de grillos o cucarachas. Los adultos pueden ser difíciles de capturar, en especial las cucarachas adultas, y les obliga de igual manera que los grillos adultos a usar veneno para su paralización, hecho que no sucede cuando se les ofrece crías o juveniles de dichos artrópodos.

Una opción que podría ser interesante es la alimentación con larvas de escarabajos Tenebrionidae, "tenebrios". Si bien no es uno de sus alimentos posibles, son fáciles de criar y mantener y una buena fuente de proteínas, pero aparentemente no tan preferidos por *Tityus trivittatus* como los grillos en primer lugar, seguidos de las cucarachas.

En nuestro laboratorio, con cierto éxito llegamos a alimentarlos con cuerpos de arañas (principalmente *Loxosceles*, *Latrodectus*) a las que previamente se les extrajo el aparato venenoso. Los *T. trivittatus* y *T. confluens*, llegan a aceptar ese alimento, si bien cadavérico "fresco". Se alimentan tanto del cuerpo del animal recién muerto como en cuerpos guardados congelados.

Por otro lado puede alimentárselos mediante el agua de bebida. Una forma es hacerlo congelando a – 20°C en pequeños cubitos, medio de cultivo para células o caldo para bacteriología u otra mezcla rica en aminoácidos, complementadas con complejos vitamínicos. De esta forma al beber agua, los animales ingieren otros nutrientes necesarios para su subsistencia. Este tipo de alimentación requiere un control diario, dado que a temperatura ambiente el alimento se contamina con hongos muy rápidamente. En los manejos individuales ésta es una buena opción de alimentación cuando se carece de artrópodos.

Debido a las características partenogenéticas que presentan estos animales, es común que se produzcan nacimientos, de los cuales a menudo algunas crías llegan a sobrevivir, aún sin separarlos de las colonias, siempre y cuando se tenga alimento abundante para toda la colonia. En los casos que se los desee separar de los adultos se les debe brindar un hábitat adecuado y ofrecerles alimento adecuado como larvas de polillas o de algunos gorgojos, que por su pequeño tamaño pueden ser tomados por los pedipalpos de los escorpiones juveniles ya que la cutícula de la ingesta es más blanda y sus quelíceros pueden desgarrarla.

1.c.3- CAPTURA DE EJEMPLARES

Para la captura de ejemplares de escorpiones del Género *Tityus* deben tomarse varias precauciones dada la potencial peligrosidad de su picadura.

La vestimenta recomendada para el personal involucrado en su captura en zonas escorpiónicas comprende: camisa de manga larga, guantes de trabajo, calzado cerrado (si el calzado es bajo convendría utilizar medias gruesas y acomodar a estas sobre los pantalones). Si estos recaudos no pueden cumplirse, deben extremarse los cuidados para evitar la picadura por estos animales. Si bien la picadura no sería de importancia médica para un adulto (se descarta que el personal que procederá a la captura es adulto), igualmente deben seguirse todos aquellos pasos necesarios y tener todos los cuidados para proceder a su captura.

El material de elección son los escorpiones adultos, que son los de mayor tamaño, de los cuales se puede extraer mayor cantidad de veneno y que son aquellos que representan un mayor peligro sanitario por este mismo motivo. Como sugerencia en este punto, sería conveniente, de poderse elegir, hacerlo con los animales que superen los 3 cm.

La forma más práctica y segura para capturarlos es tomarlos con pinzas. (**Fig. 1.c.3.a**) Los ejemplares pueden ser tomados delicadamente con pinzas largas (pinzas del tipo de disección o Finochietto o similar de no menos de 12 cm) o ser capturados con recipientes de boca con un ancho suficiente como para que penetre el animal sin ser lastimado, siendo útiles a tal fin frascos de mayonesa o mermelada (preferentemente de plástico), envases para enviar muestras de materia fecal u orina, o tubos de ensayo de 50 ml o más, también preferentemente (aunque no necesariamente, de plástico).

Una vez tomados se los puede guardar en los envases individuales para transportarlos (tubos, frascos, etc.), o colocarlos en un frasco u otro reservorio general, del cual posteriormente se tomará a los animales para su mantenimiento y/o transporte.

Es conveniente colocar en los extremos de la pinza con la que se tomará al animal algún elemento para evitar dañarlo. Entre estos pueden mencionarse preferentemente al teflón (enrollar varias vueltas de teflón) o a la goma (trozos de manguera de goma o látex para gas o para estetoscopio) a fin de no lesionar a los ejemplares capturados.

En el caso de no poder capturarlos mediante la utilización de pinzas, pueden capturarse mediante el uso de frascos o similar, siguiendo los siguientes pasos:

- 1) Debe cubrirse al animal rodeándolo con la boca del frasco o tubo sobre una superficie preferentemente lisa.
- 2) Luego, pasar una hoja de papel o similar bajo la boca del frasco de manera de dejar al escorpión sobre la hoja y dentro del frasco.
- 3) Girar el frasco asegurándose que el animal quede en la base o en las paredes de este lejos de la boca.
- 4) En caso de juntarlos en frascos individuales: tapar bien el frasco, asegurando la tapa con bandas elásticas o con nudos con hilo,
- 5) Si se acopian varios en un frasco: ir depositándolos en un frasco u otro recipiente seguro hasta finalizar la recolección, tras la cual se deben acondicionar para evitar las peleas y el canibalismo entre los ejemplares.

NOTA 1: el escorpión no puede trepar por paredes lisas, tanto de vidrio como de plástico.

NOTA 2: en los ambientes con mucha cantidad de arácnidos conviene tener las mangas y cuello de la camisa abrochadas e inspeccionarse bien las vestimentas así como los bolsos u otros elementos que hayan estado en dichos ambientes una vez finalizada la recolección.

1.C.4- MANTENIMIENTO DE LOS EJEMPLARES

a- Si los ejemplares son capturados en envases individuales, los mismos pueden ser dejados en dichos envases (Fig. 1.c.4.a), proveyéndoles de agua mediante la colocación de una bolita de algodón mojada, la cual se debe ir manteniendo húmeda para que los mismos puedan tener agua *ad libitum*.

b- Si no fuese posible acondicionarlos en envases individuales, puede hacerse en cajas tipo frasco hermético de plástico (P.ej. *Tupperware*®) proveyéndoles un sustrato adecuado (arena, tierra, cartón, papel cortado en trocitos, etc.) y algunas cajitas vacías,

trocitos de tronco o piedra (o similar), para que los animales puedan esconderse y protegerse de la luz. En este caso se puede poner algodón en una placa de Petri o recipiente similar y embeberlo en agua, a fin de proveerles del agua necesaria *ad libitum*. Hay que asegurarse que los materiales a utilizar no hayan estado en contacto con insecticidas u otro tipo de tóxicos para artrópodos.

- c- Si bien soportan temperaturas altas y resisten bastante bien el frío, es conveniente que el ambiente en donde se encuentren tenga una temperatura adecuada (para no definir valores difíciles de controlar en terreno, ellos estarán bien en un ambiente en donde un humano u otros animales estén con una temperatura confortable).
- d- Si los mismos serán mantenidos hasta su envío durante varias semanas, se debería, además de proveerles de agua. alimentarlos al menos una vez por semana con larvas de escarabajos o crías de grillos o cucarachas o grillos o cucarachas de talla pequeña o mediana a fin de evitar el canibalismo. Un grillo mediano cada tres escorpiones (como mínimo) es suficiente alimento. Si el alimento es de menor tamaño se puede aumentar esta relación. Algunos escorpiones se alimentan bien con tenebrios u otras larvas de insectos lo que facilita la labor de alimentarlos, pero lamentablemente no siempre aceptan bien ese alimento.

Igualmente, es necesario recordar que los alacranes son muy resistentes al ayuno y pueden pasar semanas o meses sin ser alimentados, si bien eso no es recomendable. Nunca debe faltarles una fuente de agua (algodón embebido u otro medio que se elija).

e- Al seleccionar el alimento a proveerles debe asegurarse que los mismos (cucarachas, grillos, etc.) no hayan estado expuestos a insecticidas u otros tóxicos, ya que puede darse el caso (entre otros) que 1- los escorpiones se envenenen al ingerir alimento que posee dosis de tóxicos subletales para los mismos pero tóxicos para el escorpión o 2- que este con las sucesivas ingestas vaya acumulando tóxicos en sus tejidos.

Figura 1.c.3.a

Figura 1.c.3.a. El lugar anatómico más adecuado para tomar al escorpión es el correspondiente al metasoma (segmentos abdominales), mal llamados "cola" de los animales. Tomados adecuadamente de esta parte, a los mismos no se le producirá ningún daño. El largo de la pinza es fundamental para tomarlos fácilmente y para evitar accidentes en el momento de la captura y la adecuación del animal.

Figura 1.c.4.a

Figura 1.c.4.a. Frascos conteniendo arácnidos de forma individual.

1.C.5- TRANSPORTE DE EJEMPLARES VIVOS

Los ejemplares vivos son necesarios para poder realizar la extracción de veneno mediante la estimulación eléctrica. Sin embargo, de no poderse enviar animales vivos (lo que es muy frecuente), se puede enviar el telson de los escorpiones, de la manera que se describirá en otro punto.

Los ejemplares pueden acondicionarse en los mismos recipientes utilizados para su captura colocados a su vez dentro de un envase de poliuretano expandido ("telgopor") o en un envase tipo "Tupperware" o similar. Es fundamental que estos posean un cierre fuerte y sean resistentes a los golpes para evitar accidentes al momento del traslado. Es conveniente colocar espuma de goma o algodón o papel dentro de la caja que contenga los tubos o frascos con los escorpiones, a fin de amortiguar los golpes que se producen durante los movimientos (ver figura) (ver sección 1.c.7 Embalaje).

De no contarse con envases individuales para enviar a los escorpiones, pueden colocarse directamente a los mismos en envases tipo *Tupperware*® o en cajas resistentes. Se debe colocar algún sustrato adecuado para los animales como papel o cartón, o tierra o arena en cantidades moderadas para evitar lesionar a los animales en los movimientos inherentes al transporte esto preferentemente si la remisión no tardará mucho, para evitar canibalismo.

Si los animales deben estar varios días en esa situación, a los envases de captura deben realizárseles agujeros de pequeño diámetro en la tapa o los laterales a fin de que se pueda renovar el aire (perforaciones con una aguja 25/8 o 40/12 serían suficientes). Si el tiempo es mayor a unos pocos días, se puede colocar en los envases que contienen los escorpiones, un trocito de algodón (1-2 cm de diámetro) embebido en agua. A la caja que contenga los tubos o frascos o las cajas con escorpiones, también pueden realizársele en este caso algunos agujeros a fin de permitir el ingreso de aire.

Los envases conteniendo los escorpiones individuales o en grupos, deben ser bien cerrados y enviados por la vía de elección, asegurándose de avisar al receptor el momento de llegada a fin de que los animales no sufran las condiciones de encierro por demasiado tiempo y puedan prepararse los habitáculos para los mismos al recibirlos.

Siempre que sea posible se debe declarar el transporte de los animales a las autoridades locales o nacionales de Fauna a fin de tenerlos en conocimiento y confeccionar las Guías de Tránsito de los ejemplares en cumplimiento de los requisitos de estos organismos cuando esto fuese necesario.

1.c.6- TRANSPORTE DE TELSONES

Dado que tras el último segmento abdominal se encuentra el telson, que posee las glándulas productoras de veneno, el envío de estos elementos es de utilidad para extraer veneno de los mismos que puede ser utilizado sin ningún inconveniente para ensayos de toxicidad y para la inmunización de animales.

En este caso hay que destacar que debe realizarse correctamente la determinación de la especie de los ejemplares ya que no hay una instancia posterior para su examen y esta no puede hacerse solamente con los telsones. Por lo tanto de enviarse telsones de animales cuando existan dudas sobre la identificación de algún ejemplar, estos deben enviarse por separado.

Para la extracción del telson deben sacrificarse a los animales (por congelamiento en freezer o durmiéndolos y congelándolos con CO₂, por ejemplo) tras lo cual se debe cortar con tijera u otro elemento cortante el telson justo tras la finalización del quinto segmento abdominal. **Figura 1.c.5.a**.

Figura 1.c.5.a

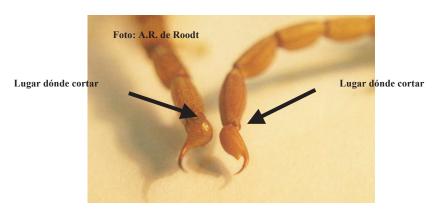


Figura 1.c.5.a. Lugar dónde realizar el corte para extraer el telson.

Nota: si bien el animal puede sobrevivir tras el corte del telson, esto no siempre sucede, por lo que se trata de evitar el sufrimiento del animal sacrificándolo sin dolor antes de extraerle el telson.

Los telsones así recolectados deben colocarse en una placa de Petri o similar, bien dispersos y evitando que se formen capas de material tras lo cual deben someterse al desecamiento en vacío o ser adecuados para su liofilización. Si fuese posible este último proceso puede realizarse colocando una determinada cantidad de telsones en los frascos apropiados, manteniéndolos a -20°C hasta su liofilización. Para saber la cantidad de telsones a colocar por frasco debe consultarse con el técnico en liofilización ya que eso depende del tipo de frasco y de aparato disponible.

La desecación al vacío debe realizarse por un mínimo de 2 horas. Si fuese posible, más tiempo (4 horas), o realizar dos ciclos de al menos dos horas guardando el material entre ciclos al menos a 4°C. Una vez desecado el material, debe evitarse la hidratación del mismo guardándolo en lugares secos o en recipientes que a su vez posean desecadores para evitar la humedad ambiental, sobre todo si el uso o el envío no se realizarán inmediatamente. Un elemento de fácil adquisición y barato a tales efectos es el arroz. Los frascos con los telsones, pueden incluirse en envases que contengan arroz, a fin de que este retenga la humedad, hecho muy importante en ciudades húmedas, como por ejemplo Buenos Aires.

Una vez desecados o liofilizados pueden acondicionarse en frascos o tubos de ensayo debidamente protegidos y rotulados para su envío.

Una forma segura de transportar los tubos con telsones es colocarlos dentro de dos bloques de telgopor gruesos, previamente envueltos en algodón, colocando todo eso dentro de una caja.

1.c7- EMBALAJE

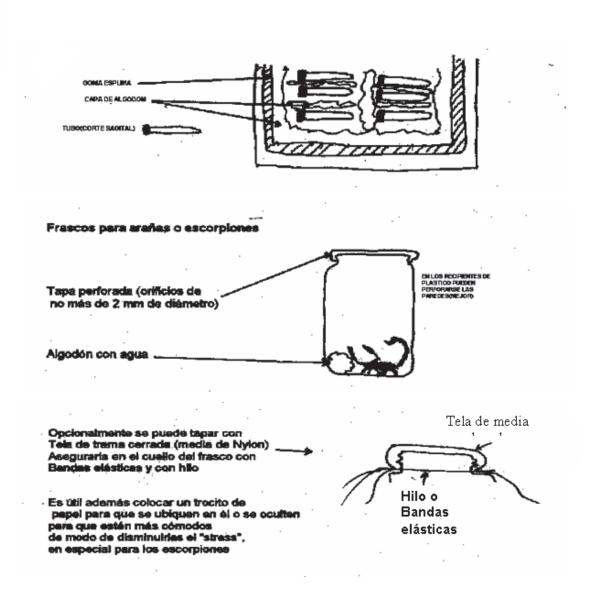
El material debe estar bien empacado en cajas de cartón fuerte o de poliuretano expandido (telgopor) grueso (ver gráfico adjunto).

Las cajas que contengan tubos pueden ser de diferentes materiales pero recomendamos las de telgopor gruesas (como las utilizadas para la vacunas) u otras que sean fuertes y livianas y amortigüen los golpes. Además, conviene colocar por la parte

interna de las cajas en sus paredes, gomaespuma o bollos de papel, para que el material quede fijo y a la vez resista los golpes causados por el movimiento durante el transporte.

Los tubos o los frascos deberían estar separados por láminas de algodón o gomaespuma, o estar envueltos individualmente entre algodones. Esto es fundamental en el caso de los tubos y frascos de vidrio. Utilizando tubos o frascos de plástico no es necesaria la protección individual.

Los escorpiones pueden permanecer varias semanas sin comer pero conviene proveerles agua de la forma antes descripta (bollito de algodón húmedo).


Los frascos o los tubos o las cajas pueden ser acomodados dentro de la caja de transporte en otros recipientes. A estos efectos son útiles por su hermeticidad los recipientes del tipo *Tupperware*®, con perforaciones (como las descriptas) en la tapa. Estos bien envueltos en papel madera deben ser colocados adentro de la caja de transporte. De esta manera pueden facilitar el envío de los animales cuando hay mucha cantidad de los mismos o cuando la caja que los transportes pueda ser sometida a maltrato.

Siempre hay que asegurarse que los animales posean una reserva de aire. Esto es fundamental cuando deban estar varios días dentro del embalaje. Si esto es así, conviene hacer alguna perforación como las descriptas aún sobre la caja externa. En estos casos, la caja puede tener una última capa de envoltura, la que puede realizarse con papel o lona no impermeable o arpillera a fin de que facilite la entrada de aire. La arpillera es una opción barata. Si la caja en que son transportados los escorpiones es amplia, este último detalle no es necesario debido a que habría una reserva de aire importante.

Hay que asegurarse bien que las junturas estén bien cerradas para que ante un accidente, no se corran riesgos inútiles.

Debe indicarse por fuera que el transporte es de material biológico y que es frágil para evitar accidentes por alguna persona que la manipule sin conocimiento de su contenido.

Figura 1.c.6.a- Transporte de ejemplares individuales

1.d- OBTENCIÓN DE VENENO

1.d.1- INTRODUCCIÓN

El veneno es producido por glándulas ubicadas en el telson y es inoculado mediante el acúleo o aguijón en sus presas o en sus predadores. El aguijón en su parte lateral y subterminal, posee un pequeño surco que es dónde desembocan los conductos venenosos del telson y por el que vierte su veneno en las cavidades de sus víctimas.

El mismo es una secreción de consistencia mucosa o seromucosa, que posee una gran tensión superficial lo que dificulta su extracción ya que al ser estimulados los escorpiones para secretarlo, gran parte del veneno queda retenida en la superficie del acúleo y / o del telson.

La cantidad de veneno obtenida por extracción (internacionalmente se acepta llamar a la extracción de veneno "ordeñado") puede ser variable y si bien cuanto mayor es el animal potencialmente (considerando que sus glándulas estén llenas), podría obtenerse a partir de éste mayor cantidad de veneno, esto no siempre se cumple, por factores que van desde el estado de llenado de las glándulas, la integridad del telson y la variación individual en la producción de veneno, hasta el grado de excitación del escorpión.

El veneno de alacranes puede obtenerse estimulando a los animales para hacerlos secretar veneno, o extrayéndolo a partir de homogenatos de télsones. Obviamente, en el primer caso no es necesario matar al animal, pudiéndose obtener veneno a partir de estos varias veces. En el segundo caso, el animal cuando no es sacrificado antes, muere casi siempre tras el corte del telson.

1.d.2- OBTENCIÓN DE VENENO A PARTIR DE HOMOGENATO DE TÉLSONES

Como se indicó en la sección anterior, las glándulas productoras de veneno se encuentran en el último segmento, por lo que a partir de este se pude extraer el veneno que estas contienen. La cantidad de veneno extraída está condicionada al estado de llenado de la glándula al momento del sacrificio. Por ese motivo, no es posible predecir la cantidad de veneno que se podrá extraer.

Aunque parezca trivial, este concepto en ocasiones no parece ser entendido. Creer que a partir de una muestra de un pool de télsones desecados se puede inferir la potencia del pool, no es poco común. Si consideramos que 1- en los télsones podemos tener variedad de tamaño y peso, 2- que además el contenido de veneno de los mismos no necesariamente será similar inclusive en télsones del mismo tamaño y del mismo origen y que 3- existen variaciones individuales en la toxicidad de los venenos, se puede inferir la imposibilidad de saber con exactitud a partir de una muestra la potencia de un pool de télsones, o la cantidad de proteína que se puede obtener a partir de estos si no se los procesa a todos télsones. Este es uno de los inconvenientes de este método, sobre todo cuando los télsones no fueron extraídos adecuadamente (extrayéndolos de animales muertos y en estado de descomposición, extraídos de animales que se alimentaron recientemente, etc.).

Algunos de los factores citados como variación pueden unificarse, como por ejemplo el llenado de la glándula. Esto puede estandarizarse alimentando a los animales para posteriormente proveerles solamente alimento líquido, dejándolos en habitáculos individuales, durante tres o cuatro semanas. De esta forma el factor llenado de las glándulas será relativamente homogéneo. Pero es claro que esta variable sola no brinda uniformidad en la muestra total.

La manera correcta de obtener veneno a partir de télsones y que este sea utilizable para estudios toxicológicos, o la preparación de antígenos para inmunización, es realizar pooles grandes, debidamente homogeneizados y controlados bioquímica y toxicológicamente. Esto permite un gran ahorro de material y uniformidad para las tareas a realizar, sobre todo en lo referente a la producción y control de antivenenos escorpiónicos.

Brevemente, el método consiste en lo siguiente. Se homogeniza en un mortero télsones (frescos o conservados por desecación o liofilización, agregándole NaCl 0,15 M.

El material homogeneizado se centrifuga a 9000 g y a 4°C durante 15 minutos. Se extrae el sobrenadante que se guarda a 4°C. El culote del tubo se resuspende en NaCl 0,15 M nuevamente y se vuelve a centrifugar de la misma manera. Esto es debido a que en el mismo queda retenido material proteico. Una vez centrifugado este, se mezclan los dos sobrenadantes y se vuelven a centrifugar. Esto es debido a que suele quedar (a pesar de las centrifugaciones previas) material mucoso en los primeros sobrenadantes.

A este material final se lo separa en alícuotas en proporción conveniente, usualmente en un volumen tal que represente 1 telson en $100 \mu l$, para facilitar los cálculos y determinaciones posteriores. Al material se lo guarda en alícuotas a -20° C, determinándose la concentración de proteínas por el método de Bradford (1796) o leyendo la absorbancia a A_{280} nm y la potencia letal en ratones (CF-1 o NIH) por las vías intravenosa (i.v.) o intraperitoneal (i.p.).

De esta forma, se obtiene un material que no contiene solamente veneno sino otros productos celulares y de la hemolinfa de los escorpiones, pero muy útil a los efectos de estudios toxicológicos o para inmunizar animales para la obtención de anticuerpos. De hecho es el método más utilizado para la inmunización de animales para la obtención de antiveneno.

Este método es el único que asegura obtener veneno de todos los escorpiones, dado que no todos tienen el aguijón en buen estado, lo que hace que a varios de estos durante los ordeñes no pueda extraérsele veneno por estimulación eléctrica o manual. Por otro lado, se obtiene todo el veneno contenido en las glándulas, lo que no siempre se logra al estimular eléctricamente a la glándula. Obviamente el punto negativo de este método es que es necesario matar al animal. Pero es el único método disponible cuando no es posible mantener alacranarios, y en las situaciones en que la cantidad de escorpiones es muy grande (como en el caso de México) y existe una oferta grande de los mismos es una forma adecuada para su obtención para los fines de producción de antiveneno. En estos casos se suelen utilizar mecanismos de compra de escorpiones para obtener sus télsones o sus télsones ya desecados.

1.d.3- OBTENCIÓN DE VENENO A PARTIR DEL ANIMAL VIVO.

El veneno es producido por las glándulas en el telson y es conducido hacia el acúleo, mediante el cual es inoculado. Si el estado del telson es bueno, este método permite obtener veneno repetidas veces a partir de un animal, y es el de elección para la obtención de veneno no sólo para los estudios sobre el mismo sino también para su uso en la inmunización de animales.

Si bien las glándulas producen veneno constantemente como suelen hacerlo todas las glándulas productoras de veneno, por la poca cantidad de este que puede extraerse, deben darse períodos de tiempo de varias semanas entre extracciones a fin de poder obtener cantidades de veneno manejables. Esto es más entendible si consideramos que el promedio de veneno obtenido a partir de ejemplares de *T. trivittatus* oscila entre 1 – 2 μl por animal. Por otro lado y debido a ese mismo motivo, por fines de practicidad, los ordeños preferentemente deben realizarse sobre grupos grandes de animales.

Cuando se sujeta a un escorpión, puede observarse una gotita de veneno en el extremo del telson, lo que sugiere que estos son fácilmente excitables, y que la obtención de veneno de esta forma es sencilla, aunque lo último no es totalmente correcto.

No siempre coincide el estímulo que podamos aplicar con el "deseo" del escorpión de liberar el veneno, el veneno puede no salir debido a dificultades anatómicas como conductos parcial o totalmente tapados, por encontrarse las glándulas productoras de veneno vacías o por motivos imponderables.

Sin embargo, la estimulación a partir del animal vivo es la más conveniente. Esta puede hacerse de varios modos, como la estimulación directa del escorpión, por ejemplo tomándole el telson con una pinza y frotándole el lomo con algún objeto que no dañe su cutícula, o tomando el telson entre los dedos y presionándolo suavemente. Este último método puede ser de utilidad para los escorpiones de gran tamaño, pero es dificultoso y puede ser peligroso con los de tamaño pequeño.

La que mejor resultado brinda es la estimulación eléctrica. Se le hace pasar una corriente eléctrica de alto voltaje y muy bajo amperaje. La corriente continua es más eficiente, si bien con la alterna se puede también extraer veneno.

En nuestro caso utilizamos 12 Voltios, si bien esto es muy variable en los diferentes centros (**Cándido y Lucas, 2004**) obtenidos a partir de una batería de automóvil, si bien hay instituciones que utilizan voltajes superiores.

El veneno puede obtenerse con los animales inmovilizados con frío o CO₂ o directamente tomándolos e inmovilizándolos.

Tras la estimulación el veneno puede obtenerse apoyando el telson sobre un vidrio limpio (portaobjeto o placa de Petri) en dónde por tensión superficial queda "pegada" la gota de veneno a la superficie de éstos (**Figura 1.d.1**). Una vez ordeñados muchos escorpiones, el veneno puede desecarse al vacío y adecuarse tras el raspado de la placa o, puede lavarse la placa con agua destilada y liofilizar la solución así obtenida. Previo a la liofilización puede fraccionase en alícuotas en un volumen adecuado al trabajo para el cual vaya a utilizarse el veneno.

En el caso de realizar lavados del veneno, es conveniente centrifugar el veneno lavado, a fin de eliminar el mucus y los detritos celulares, previo a enviarlo directamente a liofilización o fraccionase en alícuotas para su posterior liofilización o guardado a -20° C.

Otra forma de realizar el ordeñe, es fijar al escorpión manualmente o mediante aparatos de fijación y estimularlo eléctricamente (**Figura1.d.2**). En ese caso puede tomarse el veneno con un tubo capilar o con una micropipeta, e ir cargando cada ordeñe en un tubo de centrífuga. Una vez ordeñados todos los animales, el veneno es centrifugado de acuerdo a lo descripto en los párrafos anteriores y puede liofilizarse, desecarse al vacío o fraccionase en alícuotas disolviéndolo en NaCl 0,15 M u otra solución salina de acuerdo al posterior uso que se le dará, y ser guardado a -20°C.

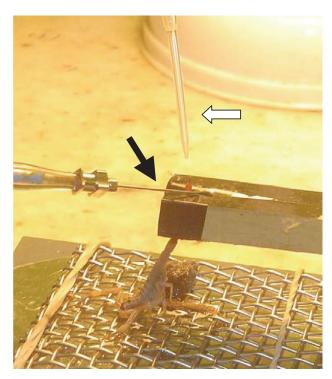

Figura 1.d.1

Figura 1.d.1. Obsérvese la gota de veneno en la punta del acúleo retenida por tensión superficial. Foto tomada de Cándido y Lucas, 2004.

Figura 1.d.2

Figura 1.d.2. Estimulación eléctrica de escorpiones para la obtención de veneno. El animal previa sedación con CO₂ es fijado sobre un electrodo y es estimulado con otro electrodo (izquierda, flecha negra). El veneno que queda adherido al telson por tensión superficial es recogido con la micropipeta (derecha flecha blanca) y cargado en un tubo o placa para constituir el pool. Este método es efectivo, pero la cantidad de veneno obtenido va disminuyendo con las sucesivas extracciones. El escorpión puede también ser tomado manualmente con la ayuda de una pinza y colocando el telson sobre dos electrodos procederse a la recolección de veneno. Este también puede obtenerse mediante la presión manual de los télsones (Cándido y Lucas, 2004).

1.d.4- USO DE LOS HOMOGENATOS DE TELSON O DEL VENENO ORDEÑADO.

El homogenato de telson es de utilidad para la producción de sueros terapéuticos y estudios de toxicidad, no siendo en primera instancia conveniente para el aislamiento de componentes o la obtención de antivenenos específicos para estudios inmunoquímicos. Esto es debido a que además del veneno en sí, los homogenatos llevan otro tipo de material proteico que dificulta los procesos de purificación y de interpretación de algunos estudios bioquímicos, sobre todo en lo referente a los componentes menores que pueden verse enmascarados por el *background* correspondiente a los otros componentes, no así en sus componentes principales y los más conocidos, como algunos tipos de neurotoxinas.

El veneno ordeñado es aplicable a cualquier procedimiento de aquellos para los que regularmente se utiliza veneno de escorpiones, es decir, estudios de toxicidad, inmunoquímicos, bioquímicos, inmunización para la producción de sueros terapéuticos y otros.

Si bien existen notables ventajas en cuanto a la cantidad del material del veneno ordeñado respecto al homogenato de télsones, el uso de estos últimos se realiza en la Argentina por varios motivos. Entre ellos posiblemente el más importante sea la dificultad de encontrar escorpiones, en especial aquellos de importancia médica, de hábitos sinantrópicos, lo que hace que a diferencia de lo que sucede con otros arácnidos las capturas no sean muy eficientes. La búsqueda de los escorpiones debe ser domiciliaria, principalmente intradomiciliaria, lo que no es sencillo, sobre todo si consideramos que el momento del día ideal para poder hallar mayor cantidad es la noche. Sólo en ocasiones excepcionales pueden encontrarse algunos nichos en los cuales las capturas dan buenos resultados.

Por ello, la obtención de escorpiones es más exitosa cuando es realizada por la misma población y los ejemplares son entregados a algún centro sanitario, como resultado de alguna campaña de salud o directamente por el pago de una suma de dinero por escorpión. En este caso, en general las instituciones que reciben los escorpiones no tienen medios para mantener grandes colonias vivas, por lo que para salvar el material que les llega, optan por la extracción y desecación de télsones, para formar lotes grandes que sean de utilidad.

Esta es la metodología mediante la cual la mayoría de los laboratorios productores de antivenenos en el mundo comenzaron a obtener veneno, y es una de las más utilizadas aún para este fin.

El otro motivo por el que se sigue utilizando el homogenato de telson para extraer veneno es la dificultad para mantener grandes escorpionarios, especialmente de escorpiones venenosos, y en especial de *Tityus*. En efecto, mantener escorpionarios implica un gasto en materiales y personal, que si bien no es alto, está muchas veces lejos de las posibilidades de las instituciones oficiales y de los deseos de inversión de las privadas. Además de los habitáculos necesarios para los alacranes, se necesita criar el alimento adecuado (grillos y cucarachas principalmente, y de algunas especies de arañas, tenebrios o larvas de otros artrópodos) para los mismos. Obviamente la cría de las fuentes de alimento necesita de material adecuado para ubicar a los animales, de "alimento para el alimento", de control de la reproducción, y otras labores. Todo el trabajo debe ser realizado por personal especializado, el que debe tener a su vez el apoyo de personal de limpieza, dadas las características de la cría de estos animales.

Si bien el veneno ordeñado es el material ideal para trabajar rutinariamente con veneno de escorpiones, los requerimientos para su obtención dificultan en nuestro medio la implementación de su uso regular.

1.e. COMPONENTES DE LOS VENENOS DE ESCORPIONES

1.e.1. CARACTERÍSTICAS DE LOS VENENOS DE ESCORPIONES

Los escorpiones usan su veneno para matar a sus presas cuando el tamaño de estas lo requiere y eventualmente para defenderse de predadores o agresores. Tras el uso de su veneno, necesitan de un tiempo que puede variar días o semanas para reponerlo. Si durante ese período pica a una persona, puede ser que no haya en su telson suficiente veneno para provocar signos de envenenamiento en el picado. Esta sería una de las razones por la que muchas personas que "corrieron la suerte" de haber sido picados escorpiones no presentan síntomas de emponzoñamiento. Esto hace que lamentablemente, mucha gente que presenció este tipo de picaduras o las sufrió, suponga que la picadura de los escorpiones no es peligrosa.

El veneno de estos animales es una mezcla compuesta por gran cantidad de péptidos básicos. Por ejemplo, al separar las fracciones cromatografías del veneno *Centruroides* en Sephadex G-50, la fracción cromatográfica que contiene las neurotoxinas que bloquean los canales de Na⁺, al ser analizada por HPLC posee más de 70 péptidos diferentes (**Possani y col., 1999a**).

¿Cuál es la razón para que posean esa enorme cantidad de péptidos neurotóxicos? Si recordamos que la utilidad del veneno es la alimentación y la defensa, y que los escorpiones no pueden predecir que presa encontrarán para alimentarse ni quien los atacará, es entendible que la naturaleza les haya provisto con un repertorio tan amplio de péptidos neurotóxicos que pueden actuar no sólo sobre diferentes canales iónicos sino sobre diferentes partes de los mismos. Un ejemplo bastante descriptivo es relacionar esto a la caza con rifle o escopeta. La amplia variedad de péptidos neurotóxicos permite que al inyectar el alacrán su veneno, pueda tener una mayor probabilidad de paralizar a las posibles presas o agresores. De la misma manera que la perdigonada de una escopeta abarca un área mayor a la del disparo de un rifle, la variedad de péptidos neurotóxicos también abarca mayor cantidad de receptores a

bloquear o modular, lo que aumenta la probabilidad de paralizar al agresor o presa. Si tuvieran sólo un tipo de péptido neurotóxico, la probabilidad de actuar estaría limitada solamente a las especies que poseyesen un tipo determinado de canal iónico correspondiente a ese péptido neurotóxico.

Las neurotoxinas de los venenos de escorpiones pueden reconocer al menos a canales iónicos de artrópodos, crustáceos o mamíferos. Desde los últimos años estos péptidos están siendo muy estudiados debido a su papel en el envenenamiento, porque son excelentes modelos para los estudios de la relación de estructura y función de proteínas, y debido a que a la vez son sondas excelentes para el estudio del funcionamiento de canales iónicos en diferentes tejidos.

Hasta el presente se han identificado más de cien clases diferentes de canales iónicos en las distintas células. Estos pueden existir aisladamente o constituir parte de estructuras más complejas. De esta segunda clase son los receptores de membrana, los asociados a receptores que responden a la liberación de neurotransmisores y los receptores de la luz en la retina. La cantidad de canales iónicos depende del tipo de célula y especies estudiadas. Por ejemplo, en 1 μm² de superficie de membrana de músculo esquelético hay un canal de K⁺, en los axones sin melina 110 canales de Na⁺, asociados al receptor de la acetilcolina en la unión neuromuscular hay 10000 asociados. Esto explicaría al menos parcialmente, el "tropismo" por el sistema nervioso autónomo del veneno en los casos de emponzoñamiento natural y experimental, y los efectos sobre el músculo esquelético observados en los envenenamientos experimentales.

1.e.2. VENENOS CRUDOS.

El veneno de los escorpiones es producido por glándulas que se encuentran tras el quinto segmento abdominal, denominado telson. Las glándulas están rodeadas de una capa muscular que al contraerse permiten que el veneno contenido en ellas sea inoculado mediante el "aguijón" en el que termina el telson.

Como se expresó en capítulos anteriores, al ser extraído por estimulación eléctrica, el veneno tiene una consistencia mucosa y color blancuzco. La cantidad que se puede extraer de cada ejemplar es muy variable, existiendo marcadas diferencias individuales,

aún en especimenes de similar tamaño y del mismo origen. Ejemplares de T. trivittatus ordeñados en nuestro laboratorio brindan un promedio que oscila alrededor de 1,0-2,0 μ l de veneno por animal, pero con una enorme variabilidad individual.

Los venenos de escorpiones contienen una variedad de compuestos biológicamente activos como enzimas, nucleótidos, lípidos, mucoproteínas, aminas biogénicas y péptidos, tóxicos para muchos organismos como insectos, arácnidos e incluso mamíferos, incluyendo al hombre, y otras substancias desconocidas (**Possani 1995**, **Possani y col. 1999a y b**). También se han descripto proteínas de mayor peso molecular que tendrían actividad a nivel del receptor nicotínico en el caso del escorpión venezolano *Tityus discrepans* (**D'Suze y col. 1995**), si bien por la concentración hallada en el veneno, su participación en los procesos fisiopatológicos no sería importante.

Como ya se mencionó, la principal función del veneno es paralizar a sus presas para poder alimentarse o defenderse. Tras sujetar a la presa con los pedipalpos, la golpean repetidas veces buscando sus partes blandas, hasta poder penetrar entre sectores de la cutícula e inocularle veneno, tras lo cual la presa queda casi instantáneamente paralizada. Una vez paralizada comienza a comerla. En el caso de los escorpiones la glándula productora de veneno está alejada de la boca, a diferencia de lo que ocurre con las arañas y serpientes. Esta posición anatómica del telson facilita mucho la extracción de veneno respecto a la de otros arácnidos. Adicionalmente, de esta manera se evita la contaminación con enzimas digestivas, problema frecuente al extraer veneno de arañas, las que poseen los elementos inoculadores (que en este caso son los mismos quelíceros) junto a la abertura digestiva.

Un ejemplo de la variedad de componentes en estos venenos puede observarse aún al realizar la cromatografía por filtración en gel. Tal es el caso del veneno de T. discrepans, cuyo patrón de elusión permite separar fracciones con componentes biológicamente activos bien diferenciados. En este caso particular, la filtración en Sephadex G-50 permite obtener cuatro fracciones bien definidas (TdF-I, TdF-II, TdF-III y TdF-IV). En cada una de estas fracciones hay 20-30 péptidos diferentes. La fracción TdF-I posee una toxina curarizante (PM \cong 49 kDa), la TdF-II contiene las toxinas neurotóxicas (PM PM \cong 8 kDa), la TdF-III las pancreatotóxicas y la TdF-IV las toxinas que actúan sobre canales de K⁺ (PM \cong 4 kDa). **D'Suze y col. 1995**)

Todas estas toxinas producen una perturbación severa de los procesos de excitación y conducción del impulso nervioso, además de alterar los procesos

neuroquímicos al inducir liberación desorganizada de neurotransmisores como la acetilcolina, adrenalina y oxido nítrico.

La característica más singular del veneno de escorpiones es que a diferencia de los venenos de serpientes, avispas, abejas u hormigas, carecen de fosfolipasas, proteasas y de otros de los factores comunes de irritación. Su letalidad radica en la presencia de toxinas dirigidas a sitios específicos modificando así el comportamiento de los mecanismos de selección iónica imprescindibles para la fisiología celular.

1.e.3. TOXINAS DE VENENOS DE ESCORPIONES

Las toxinas de escorpiones afectan la permeabilidad a iones de células excitables y se han descripto cuatro diferentes familias de toxinas que interactúan con los canales iónicos asociados a membranas celulares: neurotoxinas moduladoras de canales de Na⁺, neurotoxinas bloqueadoras de canales de K⁺, neurotoxinas para canales de Cl⁻ y neurotoxinas para canales de Ca²⁺. Las más estudiadas hasta el presente son las que actúan sobre los canales de Na⁺ y los de K⁺.

Las toxinas que afectan los canales de Na⁺ poseen entre 60-76 aminoácidos y están estabilizadas por cuatro puentes disulfuro (**Possani y col., 1999a**) mientras que las que bloquean los canales de K⁺ tienen 31-39 residuos de aminoácidos y están estabilizadas por tres puentes disulfuro, aunque se ha comunicado también que puede haber algunas estabilizadas por cuatro puentes disulfuro (**Rodriguez de la Vega y col. 2004**). Las toxinas que actúan sobre canales de Cl⁻ (Chlorotoxin) poseen solo 36 aminoácidos pero están estabilizadas por cuatro puentes disulfuro (**Becerril et al., 1997**; **Possani y col. 1999b, 2000, 2006**). A pesar de la variación en su estructura primaria hay un motivo estructural conservado entre estas proteínas, a excepción de las toxinas que bloquean los canales de Ca²⁺, cuya estructura no es tan bien conocida todavía (**Possani y col. 1999a**).

Todas estas familias de péptidos poseen un *core* altamente conservado formado por una α -hélice y tres β -plegamientos, motivos estructurales mantenidos por dos pares

de puentes disulfuro ubicados entre dos secuencias constantes Cys-X-X-X-Cys y Cys-X-X-X-Cys, en donde Cys es un aminoácido variable. La excepción a esto es una toxina excitatoria de *Buthotus judaicus*, dónde hay dos cortas α-hélices en lugar de una. **Figura 1.e.1.**

25-46 N 16-41 turn 31-35

Figura 1.e.1. Toxina moduladora de canales de Na⁺

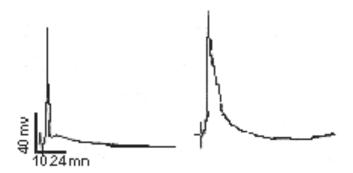
Figura 1.e.1. Diagrama de Ribbon mostrando la estructura secundaria de la *Cn2* de *Centruroides noxius*. En blanco alfa hélice, plegamientos beta en naranja, vueltas (*turns*) en gris, puentes disulfuro en amarillo. Las secuencias stretch 1-14 se indican en rojo (**Calderón-Aranda y col., 1999**).

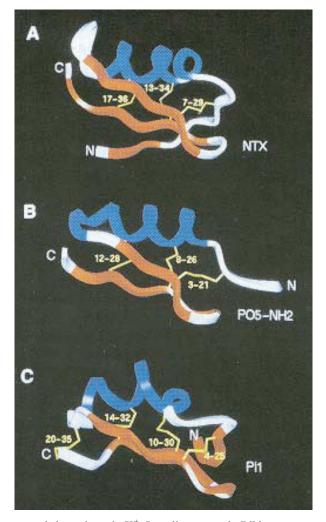
С

En las toxinas específicas para canales de Na^+ dos regiones que protruyen, los *loops* B y J, están entre algunos de los rasgos diferenciales más importantes entre las α y β neurotoxinas de escorpión.

Las toxinas que actúan sobre canales de Na^+ pueden clasificarse entre toxinas α y β . Las α -toxinas se unen al sitio 3 de los canales de Na^+ en una forma voltaje dependiente, retardando o bloqueando los mecanismos de inactivación de estos canales (**Figura 1.e.2**), y al mantenerlos abiertos prolongan los potenciales de acción despolarizando los músculos y nervios. En contraste las β -toxinas se unen al sitio 4 independientemente del potencial de membrana, y afectan la activación del canal de sodio, determinando que se abran a potenciales más negativos.

Figura 1.e.2




Figura 1.e.2- Modo de acción de una alfa-toxina moduladora de canales de sodio de veneno de escorpión, retardando los mecanismos de inactivación de los canales.

Diferencias en el extremo C terminal de las toxinas para canales de Na⁺ parecerían ser las responsables de la especificidad de especie capaz de reconocer entre tejidos de mamíferos y de insectos (**Becerril y col. 1997**; **Possani y col. 1999a**).

Se ha propuesto la existencia de un macro-receptor funcional en el sitio 3 de los canales de Na⁺ de los insectos y mamíferos, donde alfa toxinas homólogas se unen a varios sitios coincidentes de receptores causando los efectos fisiológicos de las alfa toxinas pero con diferentes eficacias. Modelos tridimensionales computarizados muestran que los residuos 30-38 y 49-58 están entre las posiciones más probables donde existe una diferencia consistente entre toxina de insecto o de mamífero (**Gurevitz y col.** 1998).

Las toxinas que bloquean los canales de K⁺ son verdaderos bloqueadores de canales iónicos, ellos se unen a la faz extracelular del canal e impiden el pasaje de iones (**Figura 1.e.3**).

Figura 1.e.3

Figura 1.e. Imagen tridimensonal de toxinas de K⁺. Los diagramas de Ribbom muestran las estructuras tridimensionales de la Nosiustoxina de *Centruroides noxius* (A), la PO5-NH2 de *Australis mauretanicus* (B) y Pil de *Pandinus imperator* (C). Se muestra solo el esqueleto y los puentes disulfuro (amarillo). Las alfa hélices se indican en azul y los plegamientos beta en rojo. **Possani y col. 1999b**.

Se conocen menos del 1% de los 100.000 péptidos que se estima que existen en los venenos de escorpión. Puede especularse que con la selección natural co-evolucionaron distintos tipos y subtipos de receptores (canales iónicos) en varios grupos de animales, y al mismo tiempo en los escorpiones evolucionaron los ligandos específicos (péptidos o toxinas) capaces de interferir con el funcionamiento normal de los canales iónicos, y brindarle de esa forma a los escorpiones una manera de paralizar a sus presas o de defenderse de predadores (**Possani y col. 1999a**).

1.e.3.1. Toxinas de *Tityus* spp. que afectan los canales de Na⁺.

Desde hace unos años hemos comenzado a estudiar el veneno de *Tityus trivittatus*. La mayoría de los trabajos que existen en la literatura sobre el veneno de *Tityus* o sus componentes están hechos con venenos de otras especies de *Tityus* (*T*.) como *T. serrulatus*. *T. bahiensis*, *T. stigmurus* y en menor medida de *T. cambridgei* (todos del Brasil), de ejemplares de *T. caripitensis*, *T. isabelceciliae*, *T. discrepans* y *T. ivic-nacor* (de Venezuela) y de algunas especies de Centroamérica (como *T. trinittatis*). Los venenos y toxinas mejor conocidos de *Tityus* son los de las especies de Brasil, en especial *T. serrulatus* y de Venezuela, como *T. discrepans*. (**Becerril y col. 1997**).

Las toxinas más abundantes en el veneno de estos escorpiones son las que actúan sobre canales de Na⁺, las que serían las principales responsables de la toxicidad en mamíferos.

Antiguamente se llamaba Tityustoxin a las toxinas de *Tityus* que actuaban sobre canales de Na⁺, considerando que eran un solo tipo de toxinas, pero actualmente se conoce que la originalmente llamada Tityustoxin comprende un grupo de varios péptidos. Por ejemplo, las toxinas gamma (ó VII) y III-8 (ó II) son β-toxinas mientras que las toxinas IV-5 (ó IV) y la TsTX-V son α-toxinas. Esta última afecta indirectamente la permeabilidad de los canales de K⁺ de las células β aisladas de los islotes de Langerhans al extender la despolarización de estas células. Como puede observarse, ante los datos de la bibliografía hay que tener muy en cuenta de qué tipo de toxina se está hablando. Los estudios de la secuencia de aminoácidos de estas toxinas están siendo de utilidad para clarificar este campo. Una excelente revisión sobre las toxinas de *Tityus* y las diferentes nomenclaturas que se les asignaron según el avance de los procesos de purificación, es la publicada por Becerril y col. (1997).

Parecería que hay al menos 5 subfamilias de péptidos relacionados estructuralmente en el veneno de los *Tityus* que serían Gamma, III-8, IV-5, péptidos TsTx VI *like* y recientemente un nuevo miembro (TsTx-V) representativo de una quinta subfamilia (**Becerril y col. 1997**).

Del veneno de *T. trivittatus*, en colaboración con grupos del extranjero, hemos aislado la primer toxina de canales de Na⁺ la cual estaría relacionada con aquellas del veneno de *T. serrulatus* (**Coronas y col. 2007**), lo que explicaría parcialmente porqué el

antiveneno producido en Brasil posee utilidad para neutralizar el veneno de *T. trivittatus*.

Esta toxina se nombró toxina Ttgamma-like. De los 70 péptidos obtenidos tras una cromatografía en HPLC, un péptido que eluyó a los 37,59 min fue secuenciado obteniéndose la secuencia N-terminal KEGYLMDHHEGCKLSCFIRPSGYCGR. La secuencia completa es altamente similar a la toxina gamma (o TS1) del escorpión brasileño T. serrulatus, mostrando un 94.3% de identidad. A partir de una biblioteca de cDNA obtenida de las glándulas productoras de veneno, se obtuvieron varios clones entre los cuales uno posee idéntica secuencia en el N-terminal. El péptido codificado por este gen expresa 61 residuos de aminoácidos como péptido maduro, con una masa molecular teórica de 6938,9 kDa. El péptido aislado posee una masa molecular de 6939,5 lo que apoya la conclusión de que el péptido purificado y el clonado corresponden al mismo elemento. El gen que codifica para la Ttgamma-like posee una secuencia deducida de 84 aminoácidos, los primeros 20 corresponden al péptido señal y los 84 restantes al péptido expresado. Los últimos tres residuos GKK son procesados durante la maduración para dar un residuo C-terminal amidado (cisteinamida), exactamente como lo posee la Ts1. La acción fisiológica de la Ttgamma-like se estudió en canales de Na⁺. Estudios preliminares muestran que con una concentración 0,5 mM la toxina es capaz de modificar las corrientes de Na⁺ de los canales humanos subtipo Na_v1.2 (Coronas y col. 2007).

1.e.3.2. Toxinas del veneno de *Tityus* que afectan los canales de K⁺.

En el veneno de *T. serrulatus* se encontraron toxinas bloqueadoras de estos canales. Se han descripto dos péptidos activos, una de 3,9 kDa (TsTx-Kα), similar al resto de las otros péptidos y otra de 8.16 kDa (TsTx-Kβ) la que debería ser considerada una clase nueva clase de toxina bloqueadora de canales de K⁺. La toxina de menos PM (TsTx-Kα) se uniría a sitios similares o cercanos en el canal de K⁺, al lugar donde se une la dendrotoxina (α-dendrotoxina) de *Dendroaspis angusticeps* ("mamba", Serpentes, Elapidae). Existe otra toxina de este tipo, denominada TsTX IV, con 41 residuos de aminoácidos y un PM de 4518. Hay entonces dos tipos de toxinas que

afectan los canales de K⁺ en el veneno de *T. serrulatus*, los péptidos de cadena larga y los de cadena corta. Los de cadena corta son similares entre sí (**Becerril y col. 1997**).

Del veneno de T. trivittatus se aisló un péptido idéntico a la butantoxin de T. serrulatus. Este posee 40 aminoácidos con cuatro puentes disulfuro, que bloquea reversiblemente los canales de K^+ shaker B y ha sido denominado TtButan-toxin (Coronas y col. 2002). También del veneno de T. trivittatus se ha aislado un nuevo tipo de toxinas para canales de K^+ la cual se ha denominado Tt28, bloqueando esta entre otras a los canales $K_v1.3$ (Abdel-Mottaleb y col. 2006). Se tratará sobre estos en el capítulo referente a la purificación de componentes del veneno de T. trivittatus.

En este punto cabe mencionar que si bien el papel de las neurotoxinas bloqueadoras de canales de K⁺ en los envenenamientos no está totalmente clarificado, su estudio es tema de interés por sus efectos insecticidas e inclusive por su posible aplicación para estudios neurofisiológicos, o incluso como potencialmente terapéuticos.

Dentro de su utilidad para estudios neurofisiológicos uno de los temas que recientemente generaron mucho interés ha sido la capacidad de algunas de estas toxinas de combinarse con los canales que poseen la mutación HERG, causante del síndrome del QT prolongado, que reduce el flujo de la corriente en el miocardio prolongando la fase de repolarización del corazón. Justamente individuos que poseen esta mutación en sus canales de K+ pueden sufrir accidentes cardíacos fatales a causa de esta característica particular de sus canales. Las toxinas de estos venenos que pueden combinar con estos canales (**Abdel-Mottaleb y col. 2008**) están siendo muy estudiadas. Este síndrome es una enfermedad familiar (frecuencia de 1/5000) que se distingue por la prolongación de la repolarización ventricular y la aparición de síncopes y muerte súbita secundarios a taquicardia ventricular polimorfa principalmente en niños y jóvenes en los que sería a principal causa de muerte súbita (**Martel Moreno 2008**).

Dentro de la potencial utilidad terapéutica de algunas de estas toxinas, puede mencionarse a aquellas que afectan algunos tipos de canales de linfocitos, como por ejemplo los Kv1.3, las que podrían llegar a utilizarse como inmunomoduladores. Se ampliará este punto en el capítulo correspondiente a aislamiento de componentes del veneno de *T. trivittatus*.

1.e.3.3. Otras toxinas

En el veneno de escorpiones se han descripto otros componentes como toxinas que actúan sobre los canales de Cl⁻ o Ca²⁺ (Becerril y col. 1997; Possani y col. 2006) como así también el mencionado componente que actúa a nivel de la placa mioneural en el veneno de *T. discrepans* (D'Suze y col. 1995). Sin embargo, en lo referente a las toxinas que actúan sobre estos canales iónicos, hasta el momento no se conoce el papel en el envenenamiento humano y en el caso del componente de *T. discrepans*, está presente en el veneno en una concentración tan baja que no posee un papel de importancia en la fisiopatología del envenenamiento.

1.f. FISIOPATOLOGÍA DEL ENVENENAMIENTO POR ESCORPIONES

1.f.1. ENVENENAMIENTO POR PICADURA DE ESCORPIONES

Los accidentes por escorpiones en ciertos lugares del mundo tienen una importancia sanitaria muy grande. Por ejemplo en México se producen más de 200.000 picaduras anuales (**Dehesa-Davila y Possani 1994**). En el norte de África y Medio Oriente son causa de envenenamientos graves y un problema sanitario de importancia (**poner referencias árabes**). En Brasil y Venezuela se producen cuadros de envenenamiento con mortalidad especialmente de niños (**FUNASA 1999**; **Cupo y col. 2003: Guinand y col. 2004**), situación similar a la que se ha descripto para la Argentina (**de Roodt y col., 2003, 2009**).

La gravedad de los accidentes por escorpiones depende de varios factores, del paciente y del escorpión. Entre los factores del paciente se pueden considerar:

- 1) La edad.
- 2) El peso
- 3) El estado de salud.
- 4) Enfermedades concomitantes (diabetes, hipertensión, cardiopatías, etc.),
- 5) Efectividad del tratamiento.

Entre los factores inherentes al escorpión deben considerarse:

- 1) La especie:
- 2) El estado de integridad del telson en el momento de la picadura.
- 3) El estado del llenado del telson en el momento de la picadura.
- 4) La cantidad de picadas y la cantidad de veneno inyectado.

Los signos y síntomas locales por la inoculación del veneno, son posiblemente los menos importantes desde el punto de vista médico. El único síntoma es un dolor muy agudo de aparición súbita y los signos que se pueden apreciar son una inflamación local mínima con algunas manifestaciones (a veces ausentes) como piloerección, palidez cutánea o eritema, entre otras. La acción sistémica del veneno es la que requiere la mayor atención ya que es la que compromete la vida del paciente en las picaduras de los Buthidae. Aún los escorpiones sin importancia médica, producen localmente un importante dolor con mínimos signos locales (**Orduna 1998; Saracco y col. 2006**).

Todos los síntomas del envenenamiento severo se deben a la estimulación del sistema nervioso periférico (Freire-Maia 1990; Freire-Maia y col. 1994) en especial a alteraciones en el sistema nervioso autónomo con la aparición de la "tormenta autonómica" (de Roodt y col. 1999).

Algunos autores (Rhada y Hase 1994) se refieren al envenenamiento escorpiónico como un síndrome de déficit de "combustible y energía" y de incapacidad de utilizar los sustratos metabólicos por los órganos vitales, lo que conduce a la falla multiorgánica y a la muerte. Esto síndrome se debería a la liberación masiva de catecolaminas, glucagón y angiotensina II y a la reducción de los niveles de insulina. El aumento en las hormonas contra-regulatorias (glucagón, cortisol y catecolaminas) se opone a la función anabólica de la insulina. Así el metabolismo general se dirige hacia el catabolismo. Las catecolaminas inhiben la actividad tirosina kinasa por lo que producen "resistencia al receptor" de la insulina (Rada y col. 2000) y estimulan la glucogenólisis, lo que aumenta la lactacidemia por liberación de ácido láctico del músculo esquelético, promoviendo la acidosis láctica. Como consecuencia de la hipoinsulinemia y la alta glucagonemia hay aumento de ácidos grasos libres y cetosis, fenómenos que se agravan por el bajo contenido de glucógeno hepático. Se observa también disminución de sustancia surfactante pulmonar lo que se relacionaría con la disminución del glucógeno hepático (el surfactante se forma a partir de este), y para su formación se necesita insulina. Esto último se podría relacionar con alteraciones pulmonares observadas en algunos envenenamientos escorpiónicos y con la hipersecreción bronquial que se observa en el síndrome de distress respiratorio producido en el envenenamiento por Tityus, descripto inicialmente y comprobado experimentalmente por D'Suze y colaboradores (1999).

En animales de experimentación inoculados con venenos de Buthiidae se observa lagrimeo, sialorrea con saliva filante, distensión abdominal, diarrea, diuresis, eyaculación, fasciculaciones musculares o contracciones tetaniformes, espasmo laringeo y protrusión ocular (**Rhada y Hase 1994**), signos observados en su mayoría, en el envenenamiento por *T. trivittatus* (**de Roodt y col., 2000**). Se observan también defectos en el sarcolema, depresión del glucógeno auricular, ventricular, del músculo esquelético e hígado, hiperglucemia, lipólisis, liberación de ácidos grasos, pancreatitis aguda, coagulación intravascular diseminada (CID), disminución de la PPO₂, de HCO₃⁻ y del pH plasmático, aumento de ácido láctico y cetonas, hipoinsulinemia, aumento de los niveles de angiotensina II y alteraciones electrocardiográficas. Estas alteraciones se

atribuyen a: (1) actividad de catecolaminas que aumentarían el consumo de 0₂, producirían vasoconstricción coronaria y periférica, aumento de la poscarga cardíaca y lipólisis, (2) aumento de la angiotensina II que produce constricción coronaria y periférica y potencia la acción de las catecolaminas, (3) hipoinsulinemia, (4) aumento del consumo de 0₂ miocárdico y aumento de ácidos grasos libres, (5) arritmias por causa de (1) y (2) y del aumento de ácidos grasos, y (6) tendencia a la CID, posiblemente debido a alteraciones de la función plaquetaria (**Rhada y Hase 1994**). En relación a este último punto se destaca que en el envenenamiento por *Tityus* se producen alteraciones en la coagulación (**Brazon y col. 2008 a y b**).

Como se ha explicado en el capítulo anterior las toxinas de escorpión actúan a nivel de las terminales nerviosas produciendo el retardo de la inactivación o alterando la sensibilidad a la apertura de los canales de Na⁺ y bloqueando los canales de K⁺ activados por Ca²⁺ (**Possani 1999 a y b**). Localmente, la picadura de los escorpiones produce dolor, seguido de un intenso prurito e hiperestesia, puede llegar a verse algo de inflamación, si bien, si se presenta, es mínima. Estos fenómenos estarían provocados por la liberación de mediadores vasoactivos. Los pacientes manifiestan molestias en el sitio de emponzoñamiento, las que se irradian por el miembro picado. Puede producir también alteraciones por acción directa sobre células excitables (músculos lisos y estriados), por acción sobre canales iónicos. A diferencia de la picadura de algunos otros animales ponzoñosos el dolor es agudo y se produce desde el mismo momento de la picadura. Puede, a veces llegar a verse algo de piloerección en la zona picada. El dolor en la picadura de los *Tityus* podría estar relacionada substancialmente con las quininas y el NO (**Pessini y col. 2008**).

El veneno se distribuye por el organismo muy rápidamente, en el caso del veneno de *Centruroides*, inoculado por la vía endovenosa, el veneno se absorbe totalmente en 4-7 minutos y las vidas medias de eliminación se encuentran entre 4,2 y 13, 4 horas (**Dehesa – Dávila y Possani 1994**). De ahí la necesidad de la rápida aplicación de los antivenenos en los casos de envenenamiento. Estudios tanto en pacientes como experimentales demuestran que la rápida aplicación intravenosa de los antivenenos conducen a una completa y duradera neutralización de las toxinas así como su redistribución parcial desde los compartimentos periféricos al vascular (**De Rezende y col. 1995 y 1996; Santana y col. 1996; Krifi y el Ayeb 1998; Krifi 2005**).

Sistémicamente, el rasgo característico del envenenamiento, es la actividad de las toxinas del veneno sobre el sistema nervioso autónomo (SNA), cuyas membranas celulares amielínicas poseen gran cantidad de receptores para canales iónicos. La multiplicidad de "blancos" de los péptidos neurotóxicos es la responsable de la variada signo-sintomatología autonómica en los cuadros de emponzoñamiento, por verse afectados los procesos de excitación y conducción del impulso nervioso. La actividad de las toxinas sobre este sistema resulta en la liberación desorganizada de neurotransmisores y se traduce por cuadros autonómicos severos con alteraciones cardiorrespiratorias que pueden llevar a la muerte (Kalapothakis y Chavez-Olórtegui 1997; Possani y col. 1992).

La actividad conjunta y sinérgica de los distintos componentes del veneno serían responsables de las lesiones observadas en el envenenamiento, provocando la "tormenta autonómica" debida a la liberación de mediadores del sistema nervioso autónomo (Rhada y col. 1994).

La signo-sintomatología autonómica puede ser simpática, parasimpática o mixta. Según los tejidos a los que se fijen las toxinas será la estimulación del sistema nervioso autónomo (Figura 1.f.1). Dentro de las manifestaciones que se producen por la estimulación del parasimpático (signos colinérgicos) se pueden mencionar: vómitos, dolor abdominal, sialorrea, náuseas, diaforesis, bradicardia sinusal, hipertensión arterial, bradipnea, broncoespasmo, diarrea, miosis, parestesias, calambres, miastenia y fasciculaciones musculares. Entre las manifestaciones simpáticas (signos adrenérgicos) se pueden mencionar, palidez cutánea, frialdad en extremidades, piloerección, taquicardia sinusal, hipertensión arterial, taquipnea, priapismo y midriasis. Ver Tabla 1.f.1.

La signología del envenenamiento no suele ser pura, lo que complica mucho la terapéutica, ya que pueden coexistir signos adrenérgicos con manifestaciones colinérgicas.

Específicamente en referencia al veneno de *Tityus trivittatus* la inoculación del homogenato de telsones o de veneno crudo en ratones produce signos tales como epífora, sialorrea, sudoración, diarreas y piloerección. Algunos lotes de veneno producen en los animales un intenso prurito local. Puede observarse también una hiperexcitación y una respuesta exagerada a los estímulos táctiles y auditivos, en ocasiones de naturaleza convulsiva. La inoculación de ratones con el veneno de ejemplares de *Tityus* de diferentes regiones de Argentina dio como resultado una signosintomatología muy similar y solamente se vieron algunas diferencias sutiles en los

cuadros de envenenamiento, independientemente de la potencia letal (de Roodt y col. 2001).

El edema pulmonar y la falla cardíaca son considerados entre las más frecuentes causas de muerte tanto en los modelos animales como en las víctimas humanas que fueron picados por *Tityus* (Freire-Maia 1990). La actividad de las neurotoxinas del veneno de los escorpiones en general resulta en alteraciones hemodinámicas pronunciadas, de origen adrenérgico como hipertensión arterial, taquicardia sinusal, tanto por los venenos de los escorpiones americanos (Amaral y col. 1994, Freire Maia 1990; Freire-Maia y Campos 1987, 1989) como por los del viejo mundo (Ismail 1995; Soffer y Gueron. 1988). Por otro lado, se pudo observar daño miocárdico que podría favorecer la falla cardíaca y el edema pulmonar (Azevedo y col. 1983, Amaral y col. 1994a, 1997; D'Zuse y col. 1999; Freire Maia y col. 1983; Gueron e Ilia, 1996).

Tabla 1.f.1. Manifestaciones autonómicas del envenenamiento escorpiónico.

Manifestaciones colinérgicas	Manifestaciones adrenérgicas
Diaforesis	Ansiedad
Sialorrea	Excitación psicomotriz
Rinorrea	Sudoración
Hipersecreción pancreática	Palidez cutánea
Náuseas, vómitos y diarreas	Frialdad de extremidades
Bradicardia sinusal	Piloerección
Hipotensión arterial por vasodilatación	Midriasis
Broncoconstricción	Taquipnea
Broncorrea	Taquicardia
Parestesias	Hipertensión arterial
Priapismo	Arritmias ventriculares
Hipotonía esfinteriana	Hipopotasemia
Hiperamilasemia	Hiperglucemia
calambres y fasciculaciones musculares	Hiperlactacidemia

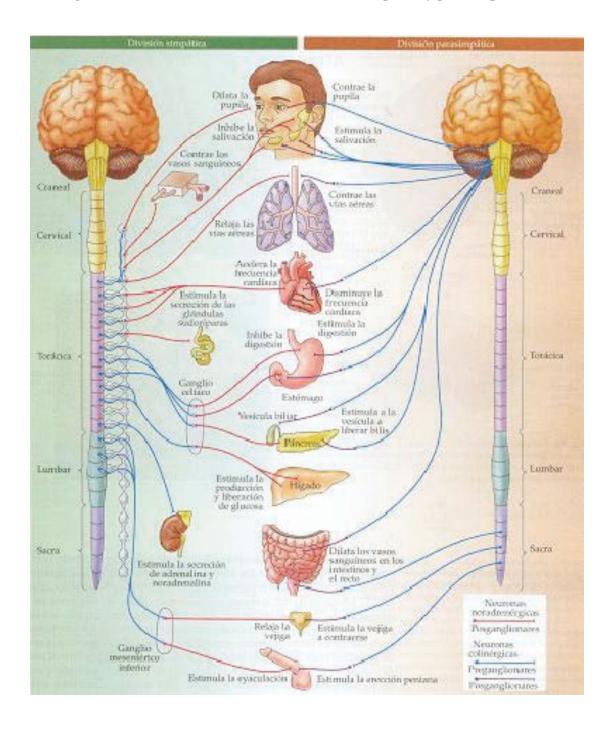


Figura 1.f.1. División de los sistemas nerviosos simpático y parasimpático.

Estudios ecocardiográficos y angiográficos realizados en niños tras la picadura de escorpión muestras anormalidades en la perfusión (Gueron y col. 1990), y se comunicó la evidencia física de lesión miocárdica en necropsias por casos de envenenamiento fatal (Daisley y col. 1999), lo que también se observó en animales de

experimentación inyectados con venenos de escorpiones (Correa y col. 1997) Existen discrepancias respecto a la toxicidad del veneno sobre el miocardio. Algunos atribuyen actividad directa sobre este a lo venenos mientras que otros mencionan que la actividad tóxica del veneno sobre el miocardio se debería a la actividad adrenérgica. Posiblemente el efecto sobre el miocardio se deba a ambas causas (Amaral y Rezende 1997). Sin embargo, parecería que las catecolaminas cumplirían un papel preponderante en la lesión miocádica (Ouanes-Besbes y col. 2005). Se ha sugerido así que las lesiones sobre el miocardio se deberían causas adrenégicas, tóxicas e isquémicas, y que explicarían la disfunción cardíaca (Bahloul y col. 2005).

La miocarditis isquémica no sería solamente debida a la liberación de catecolaminas sino que citoquinas y/o el neuropéptido Y liberados en el envenenamiento serían causantes de la miocarditis por actuar sobre los vasos coronarios. El daño cardíaco puede ser potenciado por el efecto de citoquinas en el miocardio. Por otro lado, la hiperglucemia puede aumentar el daño miocárdico (Bahloul y col. 2005).

En el músculo cardíaco se observaron lesiones representadas por pequeños cambios isquémicos consistentes en edema interfibrilar, condesación citoplasmática aislada y cuerpos eosinofílicos similares a cuerpos apoptóticos (Figura 2). Las lesiones en el músculo cardíaco en los envenenamientos por *Tityus* se atribuyeron a la acción directa de las alteraciones autonómicas causadas por el envenenamiento (Amaral y Rezende 1997) y estas serían debidas a un origen tóxico e isquémico. La liberación de catecolaminas, acetilcolina y otros neurotransmisores conducen a alteraciones hemodinámicas como hipertensión aguda y taquicardia sinusal (Freire-Maia 1990; Cupo y col. 1994).

Las anormalidades electrocardiográficas en el síndrome por envenenamiento escorpiónico (usualmente enmascaradas por la estimulación autonómica) pueden ser provocadas por los cambios electrolíticos debido a la hiperkalemia (Ismail 1995). Esta condición puede estar agravada por la liberación de K⁺ inducida por las catecolaminas (Langer 1975), el déficit en los mecanismos responsables por el ingreso de K⁺ (como el aumento de la glucogenólisis y la hiperglucemia debida a la hipoinsulinemia) y el descenso de la calcemia (Ismail y col. 1978) y la magnesemia (Gueron y col. 1990). Estos cambios pueden explicar el retraso en la conductividad aurículoventricular que favorece la ocurrencia de ritmo idioventricular, la disociación del ritmo aurículoventricular, taquicardia y fibrilación ventricular (Ismail y col. 1995).

El electrocardiograma (EKG) es de gran utilidad para el seguimiento de los pacientes. Puede haber alteraciones semejantes a algunas observadas en el infarto agudo de miocardio (como la presencia de ondas Q y el desnivelamiento del segmento S-T). En la mayoría de los pacientes picados por *Tityus* de Brasil, todas las alteraciones desaparecen en la mayoría de los casos a los 3 días pero pueden persistir por 7 o más días.

Entre las alteraciones electrocardiográficas debidas al envenenamiento por escorpiones se han descripto:

<u>Trastornos de la conducción aurículoventricular</u>: se pueden observar bloqueos de 1º o 2º grado o bloqueo aurículoventricular completo.

<u>Trastornos del ritmo</u>: taquicardia sinusal, bradicardia, extrasístoles supraventriculares y/o ventriculares, fibrilación auricular, taquicardia paroxística supraventricular sostenida.

<u>Trastornos en la repolarización ventricular</u>: aplanamiento o inversión de la onda T, desnivel negativo del segmento S-T.

Otras: alargamiento del espacio Q-T y trastornos de la conducción intraventricular.

• Ver Figura 1.f.2

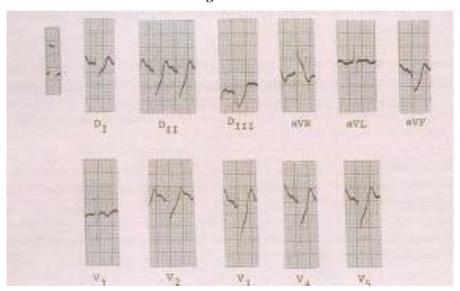


Figura 1.f.2

Figura 1.f.2. Electrocardiograma de un niño picado por *Tityus serrulatus* mostrando taquicardia sinusal y el infradesnivel acentuado del segmento ST (patrón semejante a infarto de miocardo). Foto C.F. Amaral, extraída de *Manual de Acidentes por animais peconhentos, FUNASA, 1990*.

El edema pulmonar no estaría provocado por una sola causa. Se han mencionado causas cardiogénicas y no cardiogénicas y algunos autores cuestionan el uso de término "edema" en estos cuadros. Esto es debido a que los fenómenos observados no serían los típicos de un edema de pulmón, debido a la presencia (además de la del edema) de hemorragias, trombos y émbolos y una secreción bronquial muy importante. Por ese motivo es que se propuso el uso del término de "síndrome de distress respiratorio" para referirse a las alteraciones a nivel del sistema respiratorio producidas por estos venenos (**D'Suze y col. 1999**). En los pulmones de animales de experimentación inoculados se observa colapso vascular, lesiones de la barreras capilares, y zonas hemorrágicas con importantes depósitos fibrinohemáticos de importante infiltración neutrofilica (de Roodt y col. 2001, 2009; D'Suze y col. 2004). Ver Capítulo 3.b (Anatomía e Histología Patológicas).

El factor cardiogénico y la hipovolemia provocada por la excesiva pérdida de fluidos, la acumulación de potentes substancias vasodilatadoras (quininas y/o prostaglandinas) contribuirían a la hipotensión terminal refractaria a la acción hipertensiva de la noradrenalina (Ismail 1995). La participación de sustancias hipotensoras como las quininas y/o prostaglandinas en la génesis del edema pulmonar y la hipotensión terminal está apoyada por el hecho que en las ratas y en conejos inyectados con veneno de escorpiones la administración de indometacina (inhibidor de la prostaglandinasintetasa) (Yarom y col. 1971), de BN-52021 (antagonista del PAF [factor de activación plaquetaria]) (Ismail y col. 1992), o de aprotinina (inhibidor del sistema kalicreína-bradiquinina) (Hagag y col. 1983; Yarom y col. 1971), previnieron el desarrollo del edema pulmonar inducido por el veneno y en experimentos de rescate aumentaron el tiempo de sobrevida y permitieron el rescate del 50% de los animales (Hagag y col. 1983; Yarom y col. 1971).

En humanos picados por *T. serrulatus* se observó el aumento en los niveles de IL-1α, IFNγ; IL-6 y GM-CSF, aunque incrementos masivos como los observados en el síndrome de respuesta inflamatoria sistémica solamente ocurrirían en los casos más severos de envenenamiento (**Magalhaes y col. 1999**). Recientemente se han observado altos niveles de mRNA de IL-1 e IL-6 pulmonares en el envenenamiento por *Tityus*. El alto nivel de citoquinas pulmonares observado en el edema pulmonar puede ser responsable de la exacerbación y mantenimiento de la respuesta inflamatoria al veneno escorpiónico en los pulmones y contribuiría de manera muy importante en el síndrome de *distress* respiratorio (**Andrade y col. 2006**) (**Figuras 1.f.3**).

En el veneno del escorpión indio *Mesobuthus tamulus* se ha descripto una proteína de aproximadamente 100 kDa que sería responsable del edema de pulmón producido por ese veneno (**Desphandey col. 2005**). Sin embargo, el edema de pulmón o el síndrome de *distress* respiratorio parecerían ser el resultado de la acción conjunta de varias toxinas y la alteración de diferentes sistemas y no producto de un solo componente.

En pacientes con envenenamiento escorpiónico se ha observado pancreatitis, la que ha reproducido en modelos experimentales (Correa y col. 1997; de Roodt y col. 2001; D'Suze y col. 1995, 2004; Fletcher y col. 1994, 1996). La génesis de la misma no está del todo clarificada, sin embargo la hiper-estimulación autonómica podría tener relación con los fenómenos que desencadenan la pancreatitis. En páncreas de animales tratados con venenos de Tityus de Argentina pueden observarse hemorragia, inflamación y lesiones en los acinos (Cap. 3.b). La liberación de sustancias de los acinos puede comenzar una secuencia de efectos sistémicos que pueden evolucionar hasta la muerte. Las lesiones estarían causadas al menos parcialmente por la estimulación de receptores muscarínicos (Possani y col. 1991; Fletcher y col. 1994; D'Suzey col. 1995) y pueden evolucionar hasta una respuesta inflamatoria sistémica (Norman 1998; Steer y Meldolesi 1988; Steer 1989; Frossard y col. 2001, 2002; Frossard y Pastor 2002). El la pancreatitis la liberación de factores pro inflamatorios y otros componentes deletéreos contribuyen a las lesiones en otros órganos. De esa forma la lesión aguda en los pulmones es la complicación más frecuente en la pancreatitis (Ranson y col. 1973; Steer 1989) y este mecanismo ha sido sugerido en el envenenamiento por Tityus (D'Suze y col. 2004). El sistema kalicreína-bradiquinina parecería jugar algún papel en el envenenamiento (Fukuhara y col. 2003), y recientemente se ha relacionado su activación con la hipertermia observada en el envenenamiento por Tityus (Pessini y col. 2006).

Resumiendo, las manifestaciones cardiovasculares, la acumulación de substancias vasodilatadoras (kininas y/o prostaglandinas, algunas interleuquinas), podrían contribuir al shock terminal, refractario a la acción hipertensiva de la adrenalina observado en el envenenamiento escorpiónico (Ismail 1995).

1.f.2 Alteraciones sistémicas observadas

1.f.2.1 Hallazgos de Laboratorio: las alteraciones de laboratorio rutinarias no aportan datos que puedan asegurar por sí mismos que se haya producido un envenenamiento, sin embargo son de utilidad para el seguimiento del caso. Se observan entre otros hiperglucemia, hiperamilasemia, elevación de ALT/AST (GPT/GOT), aumento de CPK sérica y MB, leucocitosis.

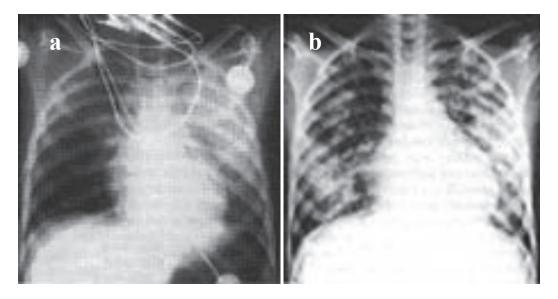
La glucemia y la amilasa sérica son los exámenes de laboratorio clínico más importantes y deben ser solicitados en todo paciente afectado por un accidente escorpiónico, además de un hemograma, ionograma y enzimas cardíacas.

La glucemia siempre se encuentra elevada. Otros hallazgos frecuentes son: hipokalemia y leucocitosis con neutrofilia. Se normalizan en las primeras horas pos sueroterapia.

La elevación de la amilasa sérica es menos regular, a veces con aumentos tardíos, y descenso entre las 24 y 72 horas. Esta sugiere daño pancreático, que fue descripto ampliamente en los envenenamientos por *T. serrulatus* en Brasil y *T. discrepans* en Venezuela, entre otros.

En casos graves los valores de las enzimas CPK, LDH, también como sus isoenzimas (CPK-MB y LD₁), y la transaminasa oxalacética (GOT), pueden estar normales o levemente aumentadas al ingreso, elevándose en posteriores controles, revelando un perfil enzimático semejante al de un infarto agudo de miocardio.

Estas alteraciones se han observado en humanos (Min. de Saude 1999; Cupo y col. 1994, 2003) y en animales de experimentación en los envenenamientos experimentales (Correa y col. 1997).


1.f.2.2 Electrocardiograma: las alteraciones pueden presentarse en el momento de la admisión del paciente o varias horas más tarde. Como trastornos de la conducción AV se han podido observar bloqueos de primer o segundo grado y más raramente, bloqueo AV completo. También se han observado trastornos del ritmo cardíaco como taquicardia sinusal, bradicardia sinusal, extrasístoles ventriculares o supraventriculares, fibrilación auricular y taquicardia paroxística supraventricular sostenida.

Se pueden observar trastornos de la repolarización ventricular como aumento de voltaje, acuminación, aplanamiento o inversión de la onda T, infradesnivel del segmento ST (lo que indicaría miocarditis) y prolongación del QTc.

Se han observado trastornos de la conducción intraventricular como el bloqueo de la rama derecha del haz de Hiss (BRDHH) y el de su rama izquierda (BRIHH).

1.f.2.3 Imágenes. En el ecocardiograma se puede observar la disfunción sistólica de ventrículo izquierdo (VI) en diferentes grados, hipo o acinesia difusa o regional del VI con disminución de la fracción de eyección. En la radiografía de tórax en los casos graves pueden observarse evidencias de edema pulmonar, con o sin cardiomegalia.

Figuras 1.f.3 Edema de pulmón por picadura de Tityus

Figuras 1.f.3. a (izquierda) y b (derecha). Radoiografía de tórax de un niño picado por un *Tityus serrulatus*. Obseérvese el edema pulmonar, principalmente en el pulmón izquierdo y el aumento del área cardíaca. Foto C.F. Amaral, extraída de *Manual de Acidentes por animais peconhentos, FUNASA, 1990*.

Figura 1.f.3.c. Edema pulmonar en un niño picado por *Tityus trivittatus*. Obsérvese el edema pulmonar sobre todo en el pulmón derecho y el aumento de la burbuja gástrica. Paciente atendido en la terapia intensiva del Hospital de Niños "Eva Perón" de la ciudad de San Fernando del Valle de Catamarca. Foto tomada por el autor con la autorización de la jefatura de la Terapia Intensiva y Dirección de dicho Hospital.

1.g- EPIDEMIOLOGÍA Y ASPECTOS CLÍNICOS DE LOS ACCIDENTES POR TITYUS EN LA ARGENTINA

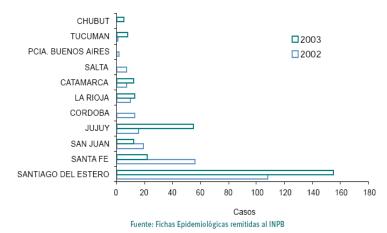
1.g.1 - ESCORPIONISMO POR TITYUS TRIVITTATUS

La información médica y epidemiológica del presente capítulo fue extraída de:

- ✓ Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". Ministerio de Salud y Acción Social. Argentina. Programa Nacional de Ofidismo y Aracneísmo. Vigilancia Epidemiológica y Control de Ofidismo y Aracneísmo. Aspectos Programáticos (offset), 1998.
- ✓ Epidemiological and clinical aspects of scorpionism by *Tityus trivittatus* in Argentina. A.R. de Roodt, S.I. García, O.D. Salomón, L. Segre, J.A. Dolab, R.F. Funes, E.H. de Titto. Toxicon 41(8): 971-977, 2003.
- ✓ Boletín Epidemiológico Nacional. Envenenamiento por Animales Ponzoñosos. Captítulo 9, pp. 67 75, 2005.
- ✓ Escorpionismo. A.S. Saracco, A.R. de Roodt, A.M. Cabrera, S.I. García. ATA Informa, Boletín de la Asociación Toxicológica Argentina 20 (71): 17-23, 2006.

1.g.2- INTRODUCCIÓN

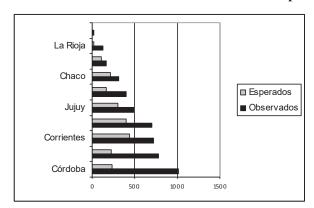
De las numerosas especies de escorpiones que se han descripto en la Argentina, *T. trivittatus* es la que ha recibido mayor atención por la población en general y por los sanitaristas.


Esta atención en los últimos años se visto aumentada por numerosos comunicados periodísticos. Muchos de ellos sustentados en informaciones deficientes, y en algunos casos con grandes falencias de información. Esto se ha visto potenciado y dramatizado por las muertes de niños en Paraná, Catamarca, La Rioja y San Juan en los años recientes.

En los datos epidemiológicos del Ministerio de Salud de la Nación se observa un aumento de los casos notificados (**Ministerio de Salud 2005 a y b; 2008**), no sólo de los registrados sino de los observados respecto a los esperados por canal endémico. Ver la **Figura 1.g.1.a y b.**

Figura 1.g.1.a

Casos de escorpionismo en los años 2002-2003.



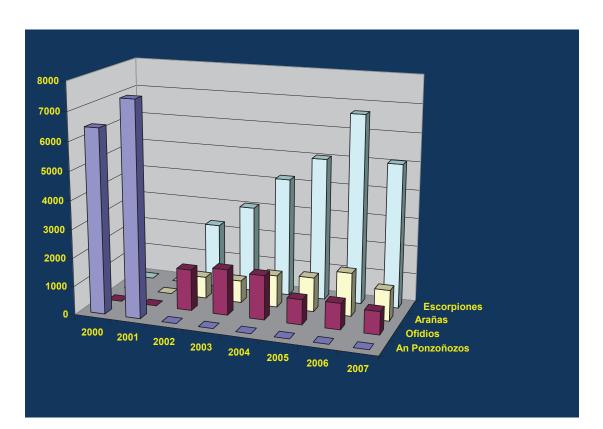
Fuente: Boletín Epidemiológico Nacional.. Año 2005.

Figura 1.g.1.b

Provincias con aumento de casos en relación al número esperado, año 2005.

Fuente: EPINOTICIAS. Febrero de 2006. Destacado de la Semana. Boletín de noticias de la Dirección de Epidemiología del Ministerio de Salud y Ambiente de la Nación.

No existen datos epidemiológicos históricos, dado que hasta el año 2002 todos los accidentes se comunicaban a las autoridades sanitarias como accidentes por animales. Esta clasificación incluía no solo a todos los ponzoñosos sino a las mordeduras o lesiones por otros animales. A partir del año 2002 se comenzaron a comunicar por separado los accidentes por escorpiones, arañas y serpientes, lo que da una idea mucho mejor de lo que sucede respecto a los accidentes por animales venenosos – ponzoñosos en el país. **Figura 1.g.1.c**



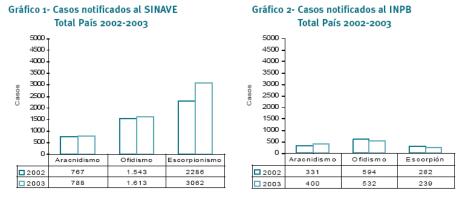

Figura 1.g.1.c

Figura 1.g.1.c. Nótese la mayor notificación de accidentes por picadura de escorpiones respecto los otros animales ponzoñosos y el aumento de la notificación de los mismos-

Parecería que los accidentes por escorpiones, o al menos su notificación, aumentaron desde el año 2002 (Fig. 1.g.1.c), si bien la cantidad de casos que requirieron tratamiento se mantuvo en el mismo nivel en los años 2002-2003. Esto puede apreciarse en el siguiente gráfico en el que se muestra la cantidad de casos notificados al Sistema Nacional de Vigilancia Epidemiológica (se comunican todas las picaduras de escorpión aunque no hayan requerido tratamiento con antiveneno) y los notificados al Instituto Nacional de Producción de Biológicos (se consideran solamente los casos que requirieron tratamiento con antiveneno). Entre los años 2002 y 2003 no hubo un aumento de los tratamientos sino una disminución mientras que las notificaciones de picaduras aumentaron. Figura 1.g.2.

Figura 1.g.2.

Fuente: SINAVE e INPB

En las notificaciones al SINAVE se observa un incremento para los tres eventos analizados en el periodo 2002-2003, no así al INPB, donde sólo se incrementa la notificación por Aracnidismo (Gráficos 1 y 2).

Figura 1.g.2. Extraída del Boletín Epidemiológico Nacional. Envenenamiento por Animales Ponzoñosos. Captítulo 9, pp. 67 – 75. 2005.

Una de las razones de la mayor notificación podría deberse a que la población está alertada sobre el riesgo potencial que significan las picaduras de escorpiones y ante picaduras por las cuales no se consultaba a un médico hace algunos años. Por ello concurren a consulta aunque sea la picadura de un escorpión sin importancia médica.

La muerte de niños en varias provincias o la aparición de informes sobre el peligro potencial que pueden representar los accidentes por escorpiones. habría colaborado con este aumento de notificaciones (**Tabla 1.g.2**).

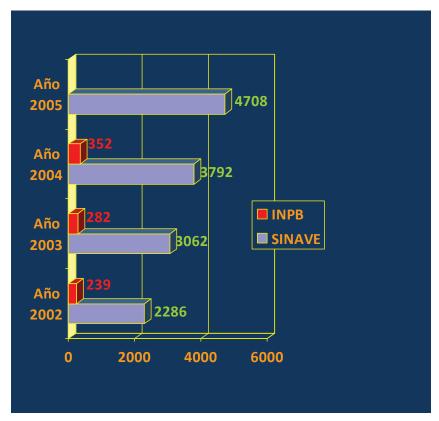
Tabla 1.g.2

Provincia/año	2002	2003	2004	2005	2006	2007
Catamarca	210	333	434	395	686	488
Córdoba	1175	968	980	1016	1425	1233
Santa Fe	252	837	741	795	720	480
S. del Estero	117	114	135	656	442	261
Tucumán	176	395	595	504	435	299
Corrientes	0	0	0	236	283	317
Chaco	0	0	0	310	404	352
Formosa	0	0	0	176	159	75
Jujuy	0	356	647	577	516	482
La Rioja	346	0	692	191	683	169
Misiones	0	0	0	6	545	584
Salta	8	39	47	116	62	45
Buenos Aires	0	0	2	0	2	2
Entre Ríos	0	0	0	0	182	197
Mendoza	0	0	0	19	19	4
Neuquén	0	1	2	15	17	10
San Juan	0	0	8	15	37	40
San Luis	2	12	5	11	16	17
Total	2.286	3.062	4.296	5.039	6.690	5084

Tabla 1.g.2. Se indican los casos de escorpionismo declarados por las diferentes provincias entre enero de 2002 a noviembre de 2007. Se observa un aumento en las notificaciones en el general del país. Los datos remarcados en negrita indican un aumento en la cantidad de notificaciones que se dio en provincias en las que se registraron muertes por escorpionismo o en relación a publicaciones o comunicados alertando sobre la peligrosidad de estos arácnidos. Datos de notificaciones al Sistema Nacional de Vigilancia Epidemiológica.

También podría deberse este aumento a cambios en la calidad de notificación a nivel provincial o departamental.

En el área de ciudad de Buenos Aires y área de influencia, las notificaciones de hallazgos de escorpiones aumentaron en el año 2001-2002 respecto a años anteriores (**Salomón y de Roodt 2002**), aumentando a su vez nuevamente en los años 2005 y 2006, en coincidencia a la mayor cantidad de informaciones periodísticas sobre la peligrosidad potencial de la picadura de estos animales.


En el caso de los *Tityus*, estos escorpiones han adquirido un carácter domiciliario o sinantrópico en varias ciudades importantes de nuestro país , y han invadido construcciones humanas. Su picadura ha provocado la muerte de niños en las provincias de Santiago del Estero, Tucumán, Catamarca, La Rioja, San Juan, Córdoba, Santa Fe y Entre Ríos. Sin embargo, pese a poseer los escorpiones y notificarse hallazgos de los mismos, en la ciudad de Buenos Aires jamás se ha registrado un solo caso grave de escorpionismo.

Si bien la población está más alerta, y ante su picadura o riesgo de la misma acuden a las autoridades sanitarias, dada la densidad de habitantes en las grandes ciudades y la densidad de *Tityus* en las mismas, las notificaciones lógicamente han aumentado.

Sin embargo, esta proporción entre accidentes y envenenamientos parece mantenerse proporcional cuando se estudian los notificados y la cantidad de tratamientos aplicados (relacionado este último valor con los envenenamientos moderados o graves). **Figura 1.g.2.1.**

Esto podría deberse a que realmente los casos de escorpionismo han aumentado por un mayor contacto hombre-escorpión, por aumento de la población de estos, o por invasión de su hábitat por el humano, con el consiguiente aumento de picaduras y de casos que requieran tratamiento. Sin embargo, también existe la posibilidad de que debido a las muertes producidas y el consiguiente aumento de comunicaciones de este tipo de picaduras, haya habido un mayor celo por tratar a los picados, en especial niños, aún cuando no presentasen cuadros de envenenamiento sistémico, que sería la indicación para la aplicación del antiveneno. Posiblemente esto se aclararía con los datos de internación en terapia intensiva o al menos las historias clínicas completas, datos de los que se carece en la información recolectada por las autoridades sanitarias.

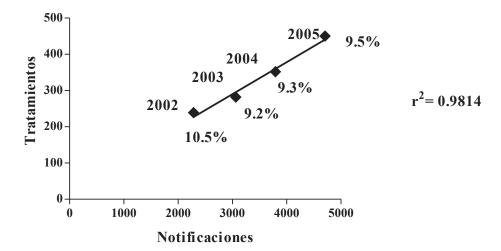

Figura 1.g.2.1

Figura 1.g.2.1. Nótese que el aumento de las notificaciones a las autoridades sanitarias y colectadas por el SINAVE (celeste) y los tratamientos aplicados registrados por planillas de tratamiento en el INPB (rojo) se incrementan a partir del 2002.

Es llamativo que el aumento de notificaciones de picaduras y de accidentes que requieren tratamiento, aumenten en forma regular. Graficando estos datos se observa una relación importante entre estas dos variables. Considerando estas variables y graficando se observa una correlación importante. El porcentual de accidentes que requieren tratamiento versus las notificaciones de accidentes está en el orden de 9-10 %. (Figura 1.g.2.2).

Figura 1.g.2.2

Figura 1.g.2.2. Se muestra el análisis de regresión lineal entre las notificaciones por picadura de alacrán recibidas en el Ministerio de Salud de la Nación, y los tratamientos con antiveneno aplicados. La regresión entre ambas variables da una regresión de 0.9814 (Software Prism3, Graph Pad).

Es necesaria una investigación más profunda en este aspecto para discernir si el aumento de notificaciones y de aplicaciones de tratamientos se deben a un aumento en la población de escorpiones, si existe una modificación en la toxicidad de sus venenos, o si hay una mayor aplicación de tratamiento cuando no es necesario. La coordinación de las autoridades nacionales y provinciales podría clarificar esta situación de importancia para la correcta provisión de antivenenos y su correcta utilización en los casos que se requiriese su aplicación.

1.g.3- ALGUNAS CARACTERÍSTICAS DE LOS ESCORPIONES DE IMPORTANCIA MÉDICA.

La especie de mayor importancia médica, *Tityus trivittatus*, habría llegado a Buenos Aires en cargamentos de madera provenientes del norte del país en las décadas de 1930 y 1940, y se habría instalado en la ciudad desde entonces. Según los estudios de

Maury (1979, 1997) los mayoría de hallazgos de los mismos se han realizado en el casco viejo de la ciudad y se han ido extendiendo en los barrios de Palermo, Barrio Norte, Almagro, Once, Parque Avellaneda, Villa Crespo y otras, lo que coincide con nuestros registros de denuncia espontánea de hallazgo de estos artrópodos en la ciudad de Buenos Aires.

Además de sus características sinantrópicas, estos escorpiones sobreviven fácilmente en edificaciones creadas por el humano, siendo uno de los factores que contribuyen a ella los lugares de las construcciones que suelen habitar. En ámbitos urbanos se los encuentra en cañerías, túneles de electricidad o de gas, cloacas, sótanos, cajas de electricidad, etc. Sin embargo, fuera de la ciudad de Buenos Aires también hemos observado hábitos peridomiciliarios y se los puede encontrar bajo piedras, rocas, maderas o cortezas de árboles en el piso, piedras o lajas apiladas, etc. Siempre buscan lugares que les brinden tranquilidad, humedad, temperatura, baja luminosidad y disponibilidad de alimentos. A pesar de que los *Tityus* de importancia médica en la Argentina pueden adaptarse a la vida domiciliaria (cierto en el caso de *T. trivittatus* si bien *T.confluens* suele ser algo más peridomiciliario), su manutención en cautiverio es extremadamente difícil como se ha explicado en capítulos anteriores.

Otra característica de estos animales que puede contribuir al mantenimiento de las poblaciones es que los mismos pueden ser partenogenéticos (Maury 1997). Recientemente se ha confirmado la partenogénesis en *T. trivittatus* en las áreas límite de distribución de la especie, donde se suelen encontrar sólo hembras (Toscano-Gadea 2004).

Posiblemente el nombre del género se deba a estas características reproductivas. En la mitología griega *Tityus*, era un gigante hijo de Zeus, que fue inducido a secuestrar a una de las amantes de su padre, madre de Apolo y Artemio. Debido a esto, su padre lo condenó a morar eternamente en el *Hades* y a que dos buitres y dos serpientes devorasen su hígado a diario (el que se regeneraba constantemente), sometiéndolo a un tormento eterno. El nombre de este personaje mitológico que rememora eterna regeneración y tormento, es con el que se bautizó a estos escorpiones.

Figura 1.g.3.1.

Figura 1.g.3.1. Tititan (*Tityus*). Oleo (253 x 217) de Tiziano Vecellio (1485 – 1576). Museo del Prado.

Estos escorpiones miden (desde los quelíceros al extremo del telson) hasta 6-6,5 cm, superando este tamaño sólo en forma excepcional (**Laskowicz y col. 2005**), son de color marrón claro, con tres líneas oscuras en el dorso del cefalotórax, en correspondencia a tres crestas (tres líneas: *T. trivittatus*) o con el lomo oscuro homogéneamente (*T. confluens*).

Poseen pedipalpos muy finos y largos sobre todo al compararlos con los escorpiones de la Familia Bothriuridae, como por ejemplo *Bothriurus bonariensis*, la otra especie de escorpión más común en el conurbano de la ciudad de Buenos Aires y de muchas de las ciudades más grandes del país, que posee pedipalpos relativamente cortos y poderosos. Obsérvense en la **Figura 1.g.3 y 4** los pedipalpos largos y delgados, la presencia de apófisis subaculear en ambos escorpiones, y las líneas oscuras dorsales en *T. trivittatus* y el dorso oscuro uniforme en el caso de *T. confluens*.

Figura 1.g.3

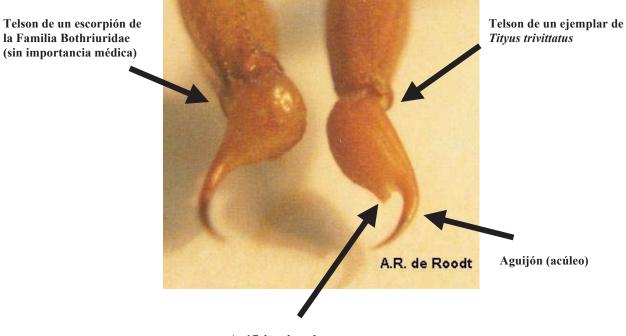
Tityus trivittatus

Pedipalpo de B. bonariensis

Pedipalpo de T. trivittatus

La diferenciación entre *T. trivittatus* (o los otros *Tityus* de Argentina) con *B. bonariensis* es extremadamente sencilla además de la forma y tamaño de los palpos por el color oscuro del último respecto a *Tityus*. **Figura 1.g.5.** En Argentina ninguno de los escorpiones de importancia médica es de color oscuro ni posee "pinzas" gruesas y cortas.

Figura 1.g.5


Bothriurus bonariensis

Tityus trivittatus

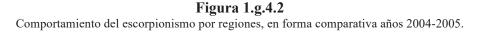
Por otro lado una característica que sirve para diferenciarlo del resto de las especies de escorpiones de la Argentina de los cuales habitualmente se solicita identificación, es el telson. Este es el segmento del animal que posee el acúleo o aguijón que en los *Tityus* presenta una apófisis (apófisis subaculear, por estar por abajo del acúleo o aguijón) que le da la apariencia de poseer dos pares de aguijones. **Figura 1.g.6.**

Figura 1.g.6

Apófisis subaculear

1.g.4- SITUACIÓN ACTUAL EN EL PAÍS

El número de casos registrado por los sistemas que recogen información (Sistema Nacional de Vigilancia Epidemiológica – SINAVE – y el Instituto Nacional de Producción de Biológicos – INPB – de la ANLIS – Malbrán) muestra una tendencia creciente en los últimos años, como se comentó antes.


El patrón estacional de notificaciones, muestra un incremento a partir en los meses de primavera y verano, como se observa en la **Figura 1.g.4.1.**

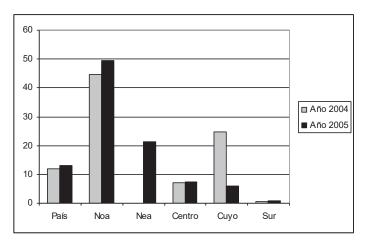
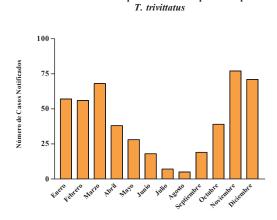

Ene Feb Mar Abr May Jun Jul Ago Sept Oct Nov Dic

Figura 1.g.4.1.
Comportamiento estacional de Escorpionismo, en todo el país años 2004-2005

Fuente: EPINOTICIAS. Febrero 2006. Destacado de la Semana. Boletín de noticias de la Dirección de Epidemiología del Ministerio de Salud y Ambiente de la Nación.

En el Noroeste de Argentina aumentaron la cantidad de notificaciones de totales de escorpionismo así como se observó un aumento de la tasa de escorpionismo por número de habitantes. Figura 1.g.4.2.

Fuente: EPINOTICIAS. Febrero 2006. Destacado de la Semana. Boletín de noticias de la Dirección de Epidemiología del Ministerio de Salud y Ambiente de la Nación.


1.g.5- DATOS OBTENIDOS A PARTIR DE PACIENTES PICADOS POR TITYUS TRIVITTATUS

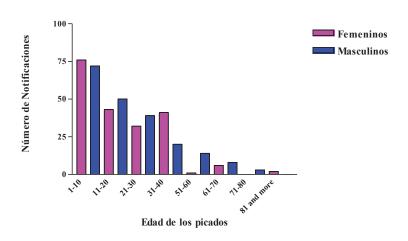
Las picaduras de escorpiones así como sus apariciones son mayores en los meses cálidos. En los meses fríos, tanto su aparición como la picadura de los mismos son muy escasos.

Se analizaron los datos obtenidos de 511 casos ocurridos en el período 1993-1999 (de Roodt y col., 2003). La mayoría de los casos provinieron de las provincias hiperendémicas para *T. trivittatus* (Maury, 1979; Acosta y Maury, 1979; Ojanguren 2005), la especie responsable de la mayor cantidad de accidentes graves por escorpiones en la Argentina. Estas provincias se encuentran entre los 26 y 36 grados de latitud sur, en forma adicional 12 de los casos corresponden a la ciudad de Buenos Aires y uno sólo corresponde a un registro de la provincia de Chubut. El 85,6% de los accidentes considerados provinieron de las provincias de Córdoba y Santiago del Estero, de los cuales 12,8% pertenecían al departamento de Robles de esta última. Se puede observar que los casos notificados de escorpionismo por *T. trivittatus* mantienen el mismo perfil que aquellos comunicados para escorpionismo general, con la mayoría de las picaduras notificadas en los meses cálidos. Figura 1.g.5.1.

Figura 1.g.5.1.

Notificaciones por mes de escorpionismo por

Figura 1.g.5.1. Números de casos de escorpionismo por *Tityus trivittatus* notificados en la Argentina durante el período 1993-1999. de Roodt y cols., 2003.


En este aspecto es interesante resaltar que a pesar de esta tendencia, los accidentes ocurrieron a todo lo largo del año, si bien el 84% ocurrió entre octubre y abril. Sin embargo el 2,5% de los casos se produjo durante los meses de julio – agosto, meses fríos y de baja actividad de los escorpiones. Alrededor del 86% de los casos fueron intradomiciliarios, en concordancia con el comportamiento sinantrópico de estos animales.

Del estudio de los datos de pacientes picados por *T. trivittatus* no se observa una tendencia marcada relacionada con el sexo en ninguno de los grupos etarios (52% hombres, 48% mujeres). En publicaciones previas, se mencionó que los niños eran picados más frecuentemente que las niñas. Las relaciones fueron 1,6 / 1 (36 casos bajo los 12 años en Santiago del Estero) (**Del Valle Luna y Luna, 1997**), 2,0 / 1 (29 casos bajo los 14 años en Córdoba) (**Gordillo y col., 2000**) y 2,6 / 1 (11 casos bajo los 11 años de edad, en Santa Fe) (**Peirano y col., 2000**). Posiblemente estas diferencias se daban al número relativamente bajo de casos analizados en comunicaciones previas.

El 51% de los accidentes se produjeron en niños y adolescentes (14 años y menores) en las siete provincias en que se registraron estos accidentes representando estos el 20,5% de la población total considerada y el 38,5% de los accidentes por escorpiones, mientras que aquellos de 65 años o mayores representaban el 18,2% de la población y el 2,2% de los picados. Estos datos sugieren que el riesgo de sufrir accidentes por escorpiones disminuye con el aumento de la edad. Se observa así que la tasa de picadura es mayor en los niños menores de 10 años. Teniendo en cuenta la distribución de edades de las poblaciones en las provincias con casos de escorpionismo, la proporción de accidentes en niños hasta los 10 años fue significantemente más alta que la de los grupos de 11 – 50 años (p < 0.001) y la de estos últimos, mayor que la del grupo de 51 – 89 años. **Figura 1.g.5.2.**

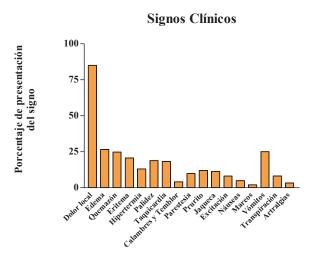
Figura 1.g.5.2

Distribución por sexos y edades

Figura 1.g.5.2. Números de casos de escorpionismo por *Tityus trivittatus* notificados en la Argentina durante el período 1993-1999. de Roodt y cols., 2003.

Esta distribución por edad puede deberse a varios motivos, entre ellos que la mayoría de los casos notificados en ese período fueron de las provincias del norte y en barrios periféricos. Los mismos hábitos de juego de los niños, sumado a la poca cantidad de ropa y calzado que estos llevan en los meses cálidos, explican que este sea el grupo etario que más haya sufrido la picadura de escorpiones. Tampoco puede descartarse un sesgo de denuncia, siendo más probable la consulta a un centro de salud cuando el picado es un menor.

Si se considera la parte anatómica picada (**Figura 1.g.5.3**), las manos (32%) y los pies (40%) fueron las que registraron mayor número de picaduras, lo que no difiere de las comunicaciones previas sobre escorpionismo en Argentina: 61% (**Gordillo y col., 2000**) y 86% (**Del Valle Luna y Luna, 1997**). También se observaron lesiones con menor frecuencia en brazos (11%) manos y piernas (10%), sin diferencia entre las partes proximales o distales. Ocasionalmente también se encontraron picaduras en el pecho (5%) y en la cabeza (2%). La predominancia de picaduras en los pies sería coherente nuevamente con patrones culturales durante los meses cálidos, como estar sin calzado o con calzado abierto. Mientras las picaduras en las manos se explicarían por los hábitos de juego de los niños y las características sinantrópicas de *Tityus trivittatus*.


Figura 1.g.5.3

Parte anatómica picada Cabeza Tórax Piernas Brazos Manos Pies Porcentaje del Número de casos

Figura 1.g.5.3. Regiones anatómicas en las que se produjo la picadura por escorpión durante el período 1993-1999. de Roodt y cols., 2003.

De los datos registrados a partir de estos 511 casos, en el 84% se comunicaron los signos y síntomas, siendo los locales más frecuentes que los sistémicos. Se observa que el dolor local es el signo de mayor presentación en este tipo de envenenamientos (85%). La expresión clínica es muy florida y mayormente relacionada con alteraciones en el sistema nervioso autónomo, siendo los signos que más se observaron dolor en el lugar de inoculación, sensación de quemazón de instalación inmediata tras la picadura y con expansión desde la zona picada (24,7%), edema (26,6%), eritema (20,7%) e hipertermia (13,1%). De los signos cardiovasculares y respiratorios se observaron palidez cutánea (18,8%), taquicardia (18,2%). También se observaron signos neurológicos como calambres y temblores (4,1%) y parestesia (9,8%). Algunos de los síntomas centrales como dolor de cabeza (11,4%), excitación (8,0%), náuseas (4,9%) y mareos (2,0%) fueron comunicados menos frecuentemente. Otros signos comunicados fueron vómitos (25,0%), sudoración (8,2%) y artralgia (3,3%). **Figura 1.g.5.4.**

Figura 1.g.5.4.

Figura 1.g.5.4. Signos clínicos observados en pacientes picados por *Tityus trivittatus*. Están expresados en porcentaje sobre el total de casos considerados.

Los síntomas locales fueron registrados en casi todos los casos. Estos signos fueron los únicos comunicados en el 37% de los casos, principalmente en los adultos. Los signos más frecuentemente hallados fueron dolor, edema, quemazón y eritema, situación que no requeriría el uso de antiveneno Si bien en las fichas estudiadas se observa que el dolor local no se presenta en el 100 % de los casos, posiblemente no sea debido a la ausencia de dolor sino a la falta de anotación del signo en las fichas correspondientes. Esta afirmación está basada en la experiencia personal por haber sido picado por estos animales y la transmitida al autor por otros investigadores y pacientes que fueron picados por alacranes. Existen casos en que no se presenta dolor, pero en esos casos tampoco hay envenenamiento. dado que como se ha dicho previamente no siempre el animal inocula veneno, si este ha sido inoculado el dolor siempre se presenta.

Cuando los pacientes se agrupan en edades de 0-10 años y se comparan con los de 11 años y mayores, el grupo de los más jóvenes presenta mayor proporción de casos sistémicos (7% versus 2%, p 0,0086 [χ^2]). Lo mismo sucede con los vómitos (52% versus 16 %, p 1,1 x 10 ⁻¹³), los signos cardiovasculares mayores (34% versus 22%, p 0,0043) excepto por la hipotensión, y algunos signos neurológicos relacionados como cambios de comportamiento (excitación / depresión) (23% versus 7%, p 6,2 x 10 ⁻⁷), y

disnea (14% versus 4%, p 0,00003). Más aún, la presencia de los signos mayores de envenenamiento sistémico (taquicardia, vómitos, hipertensión, hipotensión, etc.) fue más frecuente entre niños menores a 10 años que en los mayores (70% versus 47%, p 2,6 x 10 ⁻⁶). Por otro lado, el grupo de los mayores presentó mayor proporción de presentación sólo con síntomas y signos locales (43% versus 25%, p 0,00017), algunos síntomas neurológicos asociados como dolor de cabeza (15% vs 6%, p 0,0055) y parestesia (18% versus 5%, p 0,00011), artralgia (5% versus 3%, p 0,28, sin significación estadística), mientras que no hubo diferencias entre estos grupos en los otros signos y síntomas. Estos resultados se resumen en la **Tabla 1.g.5**

Tabla 1.g.5

Signos/síntomas	0-10 años	11 y >	p
Sistémicos	7%	2%	0,0086
Vómitos	52%	16%	1,1 x 10 ⁻¹³
Cardiovasculares mayores*	34%	22%	0,0043
Neurológicos **	23%	6,2%	6,2 x 10 ⁻⁷
Disnea	14%	4%	0,00003
Signos mayores sistémicos ***	70%	47%	2,6 x 10 ⁻⁶
Mayor signosintomatología local	43%	25%	0,00017
Dolor de cabeza	15%	6%	0,0055
Parestesia	18%	5%	0,00011
Artralgia	5%	3%	0,28

Tabla 1.g.5. Comparación entre signos y síntomas respecto a los grupos etarios poniendo de manifiesto la significación estadística entre los grupos (X^2) . * Excepto hipotensión. ** Excitación / depresión. *** Taquicardia, vómitos, hipotensión, hipertensión, etc.

Los signos principales relacionados al sistema cardiovascular fueron palidez y taquicardia, si bien también se registraron disnea, hipotensión, arritmias, cianosis, taquicardia y dolor precordial, estos fueron raros. Esta signología sumada a la hipotermia sugieren un disturbio autonómico de origen adrenérgico, involucrando especialmente al sistema nervioso autónomo simpático. Por otro lado, también se observaron vómitos, náuseas y sudoración, bradicardia, lo que indicaría una estimulación colinérgica involucrando al sistema nervioso autónomo parasimpático. Estos signos son coincidentes con las estimulaciones simpáticas y parasimpáticas en los

envenenamientos por *Tityus* de Brasil (**Freire-Maia y Campos 1987**; **Freire-Maia 1990**; **Freire-Maia y col., 1994**) así como el los resultados experimentales observados en ratones inoculados con veneno de *T. trivittatus* (**de Roodt y col. 2001**) o *T. confluens* (**de Roodt y col., 2006**; **2009**) y el resto de antecedentes expuestos en los capítulos anteriores.

Los vómitos, el compromiso cardiovascular (excepto la hipotensión) y la disnea fueron relativamente mayores en niños menores de 10 años que en los grupos mayores. Por otro lado los dolores de cabeza, las parestesias y artralgias fueron menores. Sin embargo estos datos sugieren que tras la picadura de estos escorpiones los niños menores tienen mayor probabilidad de mostrar al menos uno de los signos sistémicos.

Los signos y síntomas observados en la picadura de estos escorpiones fueron similares a aquellos descriptos en el envenenamiento por otros Buthidae americanos, tanto en lo referente a los signos locales como en lo referente a los signos sistémicos (Dehesa-Dávila y Possani, 1994; Freire-Maia y col., 1987, 1990, 1994; Mazzei de Davila y col., 1997; Ministerio da Saúde 1999; Lira da Silva y col. 2000; Osnaya Romero y col. 2001). En conclusión, nuestros datos apoyan las comunicaciones previas respecto a los envenenamientos por *Tityus* (Freire-Maia y col. 1994) indicando que los signos y síntomas del envenenamiento por escorpiones son muy ricos y en ocasiones con efectos opuestos, complicando el manejo médico de este tipo de envenenamientos.

El tiempo transcurrido entre la picadura y la aplicación del antiveneno se registró en 395 casos (84% de los 468 informes de pacientes tratados). El antiveneno específico se dio a las dos horas o en menor tiempo en el 90% de los pacientes (n= 355 de los accidentes), el 96% recibió antiveneno antes de las 4 horas, el 97% antes de las 6 horas y el 99,5% recibió antiveneno antes de la 12 horas posteriores a la picadura. Sólo en dos de los 395 casos se tardó más de 12 horas antes del tratamiento específico.

El tiempo transcurrido entre el accidente y la administración del antiveneno específico parece ser crítico dado que el veneno se distribuye muy rápido, lo que se ha visto clínica y experimentalmente (Ismail y Abd-Elsalam 1998; Chávez-Olortegui y col. 1994; De Rezende y col., 1995, Santana y col., 1996; Krifi y col, 1998). En nuestros datos se observó que el antiveneno se administró rápidamente. La mejoría en pacientes picados por *T. trivittatus* a quienes el antiveneno se les administró rápidamente ha sido ya documentada varias veces (Tomassone y col., 1994; Gordillo y col., 2000; Peirano y col., 2000). En los casos fatales registrados en Argentina por las

autoridades sanitarias y otras publicaciones (Martino y col., 1979; Del Valle Luna y Luna 1997), los pacientes no habían recibido el antiveneno apropiadamente, aunque debe señalarse que mucha gente picada no ha recibido el antiveneno y sobrevivió al envenenamiento.

También es necesario mencionar que en varias ocasiones se comunicaron fallecimientos (fuera de este período de estudio) aún aplicando el antiveneno en tiempo y en forma. En estos casos posiblemente la dosis de veneno inoculada y/o el estado basal del paciente, hayan sido las responsables de la muerte de los niños.

En este punto, también hay que considerar que el antiveneno no siempre es aplicado apropiadamente, aunque si velozmente. Puede suceder que el paciente reciba el antiveneno rápidamente tras ser ingresado al hospital, antes de las 2 horas (tiempo recomendado para su aplicación con éxito), pero que la infusión del mismo sea muy lenta. Algunos profesionales se han acostumbrado a pasar antivenenos ofidicos lentamente por la vía permeable, en períodos de tiempo largos (que pueden incluso sobrepasar la hora), para disminuir la magnitud de posibles reacciones de anafilaxia no mediada por IgE ("anafilactoideas"). En el caso del envenenamiento escorpiónico si se tarda una hora en aplicar la dosis, posiblemente cuando la dosis total ingrese al organismo, la mayoría de las toxinas se hayan fijado a los tejidos, disminuyendo enormemente la potencia terapéutica del antiveneno. Por ese motivo se debe instruir al personal de salud para que la aplicación sea rápida y en "bolo", ya que: 1) en los envenenamientos escorpiónicos por el nivel alto de catecolaminas circulantes los efectos de las reacciones anafilácticas o anafilactoideas se ven muy disminuidos (Amaral v col., 1994b), 2) los antivenenos escorpiónicos se aplican en volúmenes pequeños, que raramente superan los 2 - 10 ml. Esto es una gran diferencia respecto a los antivenenos ofídicos que se aplican en volúmenes superiores a 20 ml en casos leves a más de 100 ml en algunos casos graves. Consiguientemente la cantidad de proteína inyectada es mucho menor.

Los casos registrados en el Hospital de Agudos "Francisco Javier Muñiz" de la Ciudad de Buenos Aires y en el Hospital "Profesor Alejandro Posadas" de la provincia de Buenos Aires nunca notificaron un caso grave de escorpionismo en personas picadas en su área geográfica de influencia, si bien a fines de 2009 se produjo un posible caso moderado, pero sin hallar el ejemplar (Centro Nacional de Intoxicaciones, comunicación personal). Aunque la provincia de Buenos Aries no envíe sus datos al

Programa Nacional de Ofidismo (que colecta los datos de todos los emponzoñamientos de origen animal), durante el período 1998/1999 en el Centro Nacional de Intoxicaciones ubicado en el Hospital "Profesor Alejandro Posadas" se registraron 127 casos de escorpionismo (sin discriminación de especies) incluyendo 36 que sólo presentaron dolor local y 5 con signos moderados de intoxicación. Basándose en la descripción de los escorpiones se asume que los responsables de los cuadros de intoxicación fueron *T. trivittatus*, mientras que los otros pertenecerían a la familia Bothriuridae, cuyo veneno no es tóxico para mamíferos.

Durante los años 1993-1999 según los datos registrados, tres pacientes murieron (dos niñas de 6 y 10 años en Santiago del Estero y una niña de 16 meses en Santa Fe). Todos estos pacientes, como ya se señaló, recibieron atención médica varias horas después de la picadura y arribaron a los centros sanitarios con signos de envenenamiento sistémico por escorpión. El antiveneno fue administrado sin éxito en estos tres casos. Todos los otros pacientes tratados con antiveneno en la misma región y período mejoraron su estado y se recuperaron finalmente.

Sin embargo, hay que mencionar que entre los años 2000 y 2006 se produjeron más de doce muertes de niños debidas a picaduras de escorpión, siendo en la mayoría de los casos responsable *T. trivittatus* y en algunos posiblemente *T. confluens* (1 caso confirmado en el mismo momento de la consulta, otros 3 por búsqueda posterior en los domicilios de los niños fallecidos). Estas muertes ocurrieron en Santa Fe (3 niños), Rosario (1 niño), Paraná (1 niño), Catamarca (2 niños, con hallazgo en el lugar de accidente de uno de los casos de *T. confluens*), Jujuy (2 niños, con hallazgo en el lugar de los accidentes de *T. confluens*), Tucumán (ejemplar confirmado en la picadura *T. confluens*), La Rioja (2 niños) y San Juan (1 niño). Por este motivo, parecería que la importancia y el peligro sanitario que representan estos escorpiones para la salud pública habría aumentado respecto a los registros históricos y los más recientes. Estos datos no son coincidentes con los comunicados a las autoridades sanitarias, pero fueron en todos los casos confirmados por los médicos tratantes en las diferentes provincias.

Otras fuentes mencionan mayor cantidad de accidentes que las registradas por nosotros en la labor diaria o por las autoridades sanitarias.

En la **Tabla 1.g.6** se transcribe una tabla con muertes por escorpión en la que varios de los casos mencionados concuerdan con datos disponibles y otros no. Sin embargo, son datos confiables a pesar de las diferencias en los registros.

Si bien en todos los casos los registros se consideraron hasta el 2006, hay que mencionar que en la actualidad, a pesar de las campañas locales y entrenamiento de los médicos y la provisión de antiveneno, se siguen registrando muertes de niños. La última de la que supimos, un niño de 4 años, el 27 de enero de 2009, picado en Reconquista y fallecido en Santa Fe (Dr. González Carrillo, comunicación personal).

Si bien la vigilancia sobre los accidentes por animales venenosos mejoró notablemente a partir del año 2002 en que se desglosaron los accidentes por serpientes, arañas y escorpiones de aquellos producidos por otros animales (anteriormente se incluían junto a la mordedura o picadura por cualquier animal, aún no ponzoñoso).

Esto ha permitido tener una idea más cabal de la situación epidemiológica respecto a los accidentes provocados por animales ponzoñosos en general y por escorpiones en particular, dado que hasta ese momento solo se tenían los datos en las planillas de uso antiveneno.

Sin embargo, mucho debe hacerse aún en este aspecto para tener una cabal idea de la situación epidemiológica y poder analizar los cambios observados y su relación con variables ambientales, demográficas, climáticas y otras, a fin de poder entender los cambios que se observan y hacer proyecciones sobre cómo evolucionará el escorpionismo en Argentina.

Tabla 1.g.6

Edad	Sexo	Provincia	Fecha
1 año 6 meses	Masculino	Córdoba	09/11/2000
4 años	Masculino	Salta	13/11/20011
1 año 10 meses	Femenino	Rosario	08/03/2002
3 años	Masculino	Santa Fe	30/04/2002
7 años	Masculino	Santiago del Estero	21/01/2003
3 años	Masculino	San Salvador de Jujuy	29/04/2003
1 año 6 meses	Masculino	La Rioja	05/01/2004
1 año 6 meses	Femenino	Reconquista, Santa Fe	17/06/2004
8 años	Masculino	S. F. del Valle de Catamarca	21/11/2005
7 años	Masculino	La Rioja	01/12/2005
2 años 8 meses	Masculino	Paraná, Entre Ríos	06/12/2005
2 años	Femenino	San Miguel del Tucumán	07/12/2005
4 años	Femenino	Colonia Libertad, Corrientes	27/12/2005
5 años	Femenino	Santiago del Estero	04/02/2006
4 años	Masculino	San F. del Valle de Catamarca	22/02/2006
7 años	Femenino	La Rioja	23/02/2006
1 año 6 meses	Femenino	Reconquista, Santa Fe	11/10/2006
3 años	Masculino	San Juan	29/10/2006
8 años	Femenino	Santa Fe	05/11/2006

Tabla 1.g.6. Muertes por escorpionismo. Datos obtenidos de la información mediática y por Internet. Datos de Cambios regionales en la Toxicología Clínica: 30 años". Dr. Juan Carlos Piola. Cátedra de Farmacología y Toxicología. Curso Internacional de Emergencias Toxicológicas, Lima, Perú, 4-7 de julio, 2007.

http://www.cepis.ops-oms.org/bvstox/e/cursos/peru_julio07/dia06/07_Piola.pdf

2- CARACTERÍSTICAS DE TITYUS TRIVITTATUS DE LA ARGENTINA

2.1- CARACTERÍSTICAS CORPORALES

Dada la amplia distribución de esos arácnidos en nuestro país y los consecuentes diferentes climas, hábitat y oferta alimenticia en las distintas regiones, podría suponerse que no necesariamente los ejemplares de esta especie posean características similares. Por ese motivo estudiamos algunas características relacionadas con el tamaño de estos escorpiones y de sus télsones. Esto último debido a que en esas estructuras se encuentran las glándulas productoras de veneno y a mayor tamaño de estas estructuras hay mayor cantidad de veneno en relación a otros más pequeños (a igual estado de llenado).

Largo corporal de los escorpiones

Son escorpiones pequeños, en general de 4-6 cm, siendo la medida máxima de los adultos medidos en nuestro laboratorio algo inferior a los 7 cm. Sin embargo los datos existentes sobre el tamaño de estos arácnidos se basan sobre algunos pocos ejemplares, o no indican la población de animales utilizados para establecer ese valor, y en general consideran muestras sólo de determinadas regiones de la Argentina. Por ese motivo y para tener una idea del tamaño de los ejemplares de esta especie en las diferentes regiones del país, procedimos a medir los ejemplares de escorpiones adultos que se conservan en nuestro laboratorio y comparar las medidas de los mismos.

Relación entre el largo corporal y el largo de los télsones

El tamaño de los télsones (segmento del cuerpo que contiene las glándulas productoras de veneno) sería usualmente proporcional al tamaño del cuerpo de los escorpiones, sin embargo estos datos para *T. trivittatus* son escasos o inexistentes. Por ese motivo se relacionó el largo de animales con el largo y peso de sus télsones para tener una idea del tamaño de estos y su relación con el largo total del animal. Los ejemplares usados para este estudio provinieron de las mismas fuentes citadas anteriormente y la medición se realizó desde la articulación entre el quinto segmento del metasoma hasta el extremo del acúleo, en línea recta desde el ángulo anterior superior del telson hasta la punta del acúleo (**Figura 2.b.1**)

Figura 2.b.1

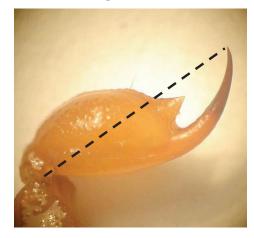


Figura 2.1. La línea indica cómo se tomaron las medidas del largo de los télsones estudiados.

Relación entre el peso de los télsones y el largo y peso de los escorpiones

Estos valores pueden variar mucho debido a que tanto el peso de los animales enteros como el de sus télsones puede verse afectado por diferentes factores. En el caso del peso del animal pueden citarse el estado de ayuno del mismo (puede hacer variar drásticamente el peso) y los restos de tierra o arena que transporte en el cuerpo (los cuales son difíciles de eliminar). El peso del telson está lógicamente relacionado con el tamaño y con la cantidad de veneno que haya en las glándulas productoras de veneno.

El conocimiento de estos datos es de utilidad operativa, dado que es a partir de los télsones de donde se extrae el veneno para producir antivenenos en gran cantidad de países productores, en los cuales no se realizan ordeñes de los escorpiones para obtener veneno sino que lo obtienen a través del homogenato de telson.

El peso de los télsones es más sencillo de estimar que su tamaño, y si estuviese relacionado con el tamaño de los animales podría ayudar a formar *pooles* de venenos homogéneos, equilibrando el mismo con télsones provenientes de animales jóvenes y adultos. Esto es importante, dado que se ha comunicado que el veneno obtenido a partir de télsones de animales jóvenes y adultos de escorpiones presenta diferente toxicidad (**Ozkan y col. 2006, 2007**). Dado que la potencia letal suele expresarse en ocasiones como el porcentual de telson que provoca la muerte a los animales utilizados para esta determinación (**Barreto – Ciccarelli y col. 1983/1984b**), queda claro que la potencia no

indicará lo mismo si el estudio se hace en télsones grandes, que en télsones pequeños. Por ese motivo conocer la relación entre télsones y tamaño del animal así como la variabilidad entre estos brinda una herramienta hasta ahora no disponible, para trabajar más racionalmente en este aspecto.

2.2- MATERIALES Y MÉTODOS

Se midieron ejemplares de *T. trivittatus* de las provincias de Santiago del Estero (Capital), La Rioja (Capital), Córdoba (Capital), Santa Fe (Capital), Entre Ríos (Paraná), Buenos Aires (Capital Federal) y de animales sin identificación de origen.

Los provenientes de Santiago del Estero fueron donados por la Med. Vet. Miriam Vucharchuc de Barrionuevo, del Instituto de Animales Venenosos "J. W. Abalos" de la ciudad homónima. Los datos provenientes de la provincia de Córdoba fueron provistos por el Lic. Jorge Reati, del Centro de Zoología Aplicada de la ciudad homónima. Los escorpiones provenientes de la provincia de Entre Ríos fueron enviados a nuestro laboratorio por la Med. Vet. Silvina Saavedra, de la Municipalidad de la ciudad de Paraná en dicha provincia. Los provenientes de la provincia de La Rioja fueron capturados en la ciudad capital de dicha provincia por el autor y el personal técnico del Área Investigación y Desarrollo / Serpentario (AIyD-S) del Instituto Nacional de Producción de Biológicos (INPB) de la Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán" del Ministerio de Salud de la Nación (ANLIS) y/o facilitados por la Dra. Carmen Díaz Ariza de la Universidad Barceló y el Dr. Eduardo Bazán de la Secretaría de Salud de esa provincia. Los animales provenientes de Santa Fe fueron enviados por el Dr. Juan Carlos Beltramino y el Dr. Roberto Tomassone el Hospital de Pediatría "O. Alassia" de esa ciudad. Aquellos provenientes de la ciudad de Buenos Aires fueron recibidos por el autor en el AIyD-S y los animales sin identificación de origen fueron obtenidos por el autor a partir de diferentes fuentes sin especificación de sitio de captura.

La medición se realizó con un calibre considerando desde los quelíceros hasta el extremo del telson, manteniendo al animal en extensión total, y se expresó en cm y mm.

Se midieron todos los escorpiones, pero para los fines comparativos sólo se consideraron a los animales adultos con tamaños superiores a los 4 cm.

Todos los datos se analizaron con el software Prism3.0 (GraphPad, CA).

Las relaciones estudiadas fueron:

- 1) Relación entre largo y peso del telson y del ejemplar: Se procedió a medir y pesar veinte ejemplares de la provincia de Santa Fe, los que fueron mantenidos en ayuno las dos semanas previas a su pesado. El largo se midió con un Vernier electrónico como en los casos anteriores y el peso se determinó en una balanza electrónica con una precisión de una décima de miligramo. Se estudió la relación entre el peso de los animales y el peso de los télsones desecados y entre el largo de los mismos versus el peso de los télsones desecados. Los resultados se analizaron mediante regresión lineal utilizando el software Prism® (Graph Pad Inc. California).
- 2) Peso de los télsones: Se pesaron 1144 télsones provenientes de ejemplares de diferentes regiones del país, a saber: Santiago del Estero (504), Santa Fe (293), Entre Ríos (55), Córdoba (204), La Rioja (30) y sin identificar (58). Los télsones desecados al vacío se pesaron en una balanza analítica con precisión de 1/10 de miligramo. Los resultados se analizaron con el software Prism3.0 (GraphPad Inc, CA).

2.3 RESULTADOS Y DISCUSIÓN

Largo corporal: Los ejemplares adultos de todas las regiones estudiadas presentaron un tamaño cercano a los 50 mm en todos los casos. Este valor está dentro de aquel comunicado para esta especie por Ojanguren – Affilastro que describe medidas en adultos entre 43 a 62 mm (Centro de Zoología Aplicada, 1993; Maury 1986; Ojanguren-Affilastro 2005). Los resultados de expresan en la Tabla 2.1 y la Figura 2.2.

Tabla 2.1- Resultados obtenidos del largo corporal de ejemplares de *T. trivittatus*.

Provincia	Córdoba	E. Ríos	S. Fe	Bs. As.	S. del Est.	La Rioja	Sin Ident.	General
Número	76	67	118	42	26	14	158	506
Mínimo	4,00	4,17	4,00	4,04	4,47	4,10	4,00	4,00
25% perc.	4,97	4,76	4,76	4,80	4,71	4,72	4,49	4,68
Mediana	5,25	5,17	5,91	5,02	4,80	4,87	4,70	5,01
75% perc.	5,53	5,71	5,66	5,24	4,98	5,30	4,97	5,43
Máximo	6,65	6,50	6,93	5,91	5,70	5,61	5,81	6,93
Media	5,25	5,24	5,22	5,02	4,86	4,94	4,74	5,07
DS	0,47	0,57	0,66	0,44	0,25	0,40	0,37	0,55
i.c. 95%	5,14-5,35	5,10-5,37	5,10-5,34	4,88-5,16	4,76-4,97	4,71-5,17	4,68-4,80	5,02-5,12
CV	8,99%	10,79%	12,72%	8,78%	5,16%	8,12%	7,83%	10,94%

Análisis de los tamaños de ejemplares adultos (considerados aquí solo los mayores de 4 cm) de las diferentes provincias. Obsérvese en este caso la importante disminución de los DS de cada muestra como del CV. DS= desvío estándar; i.c.5%= intervalo de confianza del 95%; CV= coeficiente de variación; 25% y 75%= percentiles del 25 y 75 por ciento, respectivamente.

Figura 2.2 Largo corporal de ejemplares de *T. trivittatus* de diferentes provincias.

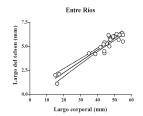
Figura 2.2. Largo corporal de ejemplares de *T. trivittatus* de diferentes provincias. Se midieron ejemplares adultos (considerando aquellos mayores a 4 cm). La barra en el gráfico indica la meda y los puntos los valores individuales considerados.

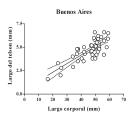
Las diferentes muestras presentaron una distribución normal (p< 0,001). En este estudio los escorpiones de Entre Ríos, Santa Fe y Córdoba mostraron ligeramente una mayor longitud que los de las otras muestras. Sin embargo, el número de muestras, aunque importante, no

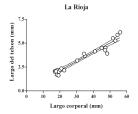
permite asegurar que una población sea mayor a la otra, pero si sugiere fuertemente que los tamaños de los escorpiones de esta especie son bastante homogéneos en las diferentes regiones del país. Obsérvese que en la figura 2.2 aquellos de regiones identificadas y con mayor número de determinaciones poseen una distribución bastante similar. Posiblemente con mayor número de mediciones se tendrá una mayor precisión en este aspecto.

Relación entre el largo corporal y el largo del telson: se observó en todos los casos una relación directa entre el largo corporal del animal y el largo del telson, con una regresión (r²) positiva mayor a 0,6 en todos los casos. También las pendientes observadas entre estas dos variables fueron muy similares expresándose dichos valores en la Tabla 2.2 y se grafican en la figura 2.3.

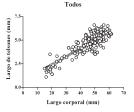
Tabla 2.2. Relación entre el largo corporal de ejemplares de T. trivittatus y el largo de sus télsones.


Procedencia	n°	r ²	Pendiente
Entre Ríos	26	0,905	$0,119 \pm 0,008 \ (0,103 - 0,135)$
Santa Fe	80	0,751	$0.081 \pm 0.005 (0.070 - 0.091)$
La Rioja	23	0,948	$0,096 \pm 0,005 \ (0,086 - 0,106)$
Buenos Aires	47	0,627	$0,092 \pm 0,011 \ (0,070 - 0,113)$
Sin Identificación	70	0,631	$0.083 \pm 0.008 \; (0.068 - 0.099)$
Todos	246	0,753	$0,090 \pm 0,003 \ (0,084 - 0,097)$

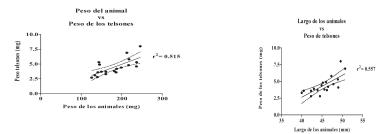

Tabla 2.2. En todos los casos se observa una relación positiva entre el tamaño de los ejemplares y el largo de sus télsones. En la estimación se consideraron ejemplares de todos los tamaños.


En todos los casos se observa una regresión positiva entre el largo corporal y el largo del telson de los escorpiones de las diferentes regiones. Las pendientes también soy muy similares en todos los casos. Esta buena regresión se mantiene cuando se consideran los resultados en conjunto y aun considerando solo los datos provenientes de animales adultos excluyendo a los juveniles (< 3,0 cm). En este caso la r² disminuye pero se mantiene positiva en todos los casos, siendo alrededor de 0,80 para los de La Rioja, de 0,63 en los de Entre Ríos de 0,61 para los de Santa Fe y de 0,4 para los de Buenos Aires y aquellos sin identificación de origen.

Figuras 2.3



Figuras 2.3. Relación entre el largo de los ejemplares y de los télsones. Los puntos significan los valores individuales considerados y se indica la línea de regresión estimada (línea entera) con los intervalos de confianza del 95% (línea punteada). Datos analizados con el Software Prism3.0 (Graph Pad).


La disminución de la regresión en el caso de los animales adultos es esperable ya que estamos considerando una población con muy poca variación de largo de los animales. Dada la poca dispersión en el tamaño de los adultos, los datos obtenidos no son fáciles de analizar, ni de medir. Sin embargo, y a pesar de esto, se observa una

relación positiva, importante entre el tamaño de los ejemplares y de los télsones, aun considerando solamente a los adultos.

Cuando se relacionó el largo de los télsones con el del cuerpo de los animales se observó que el largo del telson en estos 246 animales fue de $4,66 \pm 1,15$ mm (i.c. 95% 4,52 - 4,81 mm) con un CV del 24,61%, lo que representa el $10,31 \pm 1,44$ % del largo total (i.c. del 95%= 10,13 - 10,50 %), con un CV del 14%. Estos valores provienen del análisis de 246 animales de $45,59 \pm 11,01$ mm (i,c, 95% 44,21 - 46,97 mm)de largo corporal con un CV 24,14%.

Peso de los télsones: Se encontró una regresión positiva mayor a 0,5 tanto al relacionar el peso de los télsones con el largo como con el peso corporal, como se indica en la **Figura 2.4**. El peso de los télsones varió desde 0,1 mg hasta casi 10 mg. El CV de los valores estudiados varió desde el 27% para los provenientes de Entre Ríos hasta más del 75% en los provenientes de La Rioja. Los resultados obtenidos se pueden observar en la **Tabla 2.3** y las **Figura 2.5**.

Figura 2.4- Relación entre el peso de los télsones y el peso y el largo de los escorpiones.

En la figura 2.4 se puede observar la relación entre el peso de los télsones y el largo corporal o el peso de los animales poniendo de manifiesto que a pesar de la dispersión esperada en la variable peso, ya comentada, existe una relación directa entre el peso de los télsones y el largo de los animales de los cuales provinieron.

Los coeficientes de variación, independientemente del tamaño de los animales, pueden verse influenciados por las variaciones individuales relacionadas con la

producción de veneno, y también con el estado de llenado de las glándulas productoras de veneno.

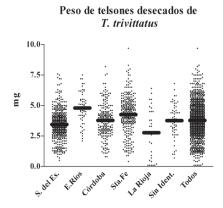
Como se ha mencionado el peso de los télsones está relacionado con su tamaño y el del animal, pero lo que es más importante, el mismo está relacionado con su contenido de veneno, de ahí la importancia de considerar que esta variable puede ser de ayuda para la selección de los télsones a utilizar para la extracción de veneno.

Todavía muchos centros utilizan la referencia de la potencia letal contenida en télsones promedio para referirse a la toxicidad de un veneno de escorpión. Esto si bien es de uso corriente, debería evitarse, dado la gran variabilidad entre el tamaño de los télsones que impide estimar la cantidad de veneno aproximada en estos.

Las muestras de los télsones de Entre Ríos y Santa Fe muestran valores superiores al resto, pero en estos casos hay que considerar que las muestras de Entre Ríos fueron en general de mayor tamaño (percentiles del 25% y 75% 4,050 y 4,797 respectivamente) seguidas por las de Santa Fe (3,500 y 4,252), mientras que en la muestra de Santa Fe se observaron los télsones más pesados de toda la muestra con un máximo de 9,7 mg.

Los provenientes de La Rioja fueron los de menor tamaño, si bien este resultado se debe a que la mayor parte de la muestra era de télsones pequeños, y en un número total reducido.

Esta enorme dispersión en el peso de los télsones de escorpiones, fue observada en todos los casos, aun en las muestras más homogéneas, siendo las diferencias entre los máximos y mínimos de aproximadamente 15,2 veces para los de Santiago del Estero, 3,6 veces para los de Entre Ríos (la muestra más homogénea, proveniente de animales grandes), 10,25 para los provenientes de Córdoba, 24,3 veces para los de Santa Fe, 64 veces para los de La Rioja, de 9,7 para los sin identificación de origen y de 97 veces considerando el total general.


En conclusión, debe considerarse esta gran dispersión para cuando se expresan las potencias letales obtenidas a partir de homogenatos de télsones (como se dijo uno de los métodos más difundidos para obtener venenos escorpiónicos). El valor promedio de dosis letales por telson, que se usa en general, no expresa la desviación en cuanto a los tamaños, por lo que no se puede referir (o no se debe) la potencia letal de un grupo de télsones o pool de veneno, obtenido a partir de télsones, como dosis letales por telson. Esto es especialmente importante cuando se deben realizar comparaciones de potencia de diferentes grupos de télsones. Aún más, en muchas ocasiones se refiere la potencia

de un pool de télsones por la toma de una muestra de pocos télsones, haciendo que el error se propague. Por estos motivos la expresión de las potencias letales obtenidas a partir de télsones de escorpión no debería referirse a la cantidad de télsones de los que se obtuvo el homogenato, sino a la cantidad de proteína obtenida a partir de estos.

Tabla 2.3. Peso de télsones de T. trivittatus desecados al vacío.

	Santiago del Estero	Entre Ríos	Córdoba	Santa Fe	La Rioja	Sin identificar	Total
Cantidad	504	55	204	293	30	58	1144
Mínimo	0,500	2,100	0,800	0,400	0,100	0,700	0,100
Perc.25%	2,800	4,050	2,900	3,500	0,450	2,950	2,900
Mediana	3,400	4,700	3,800	4,400	3,000	3,700	3,700
Perc.75%	4,100	5,700	4,500	5,200	4,650	4,700	4,650
Máximo	7,600	7,500	8,200	9,700	6,400	6,800	9,700
Media	3,448	4,797	3,776	4,252	2,770	3,762	3,775
DS	1,147	1,320	1,367	1,532	2,117	1,361	1,408
i.c.95%	3,348-3,548	4,440-5,153	3,587-3,965	4,075-4,428	1,980-3,560	3,404-4,120	3,694-3,857
CV	33,28%	27,52%	36,20%	36,03%	76,41%	36,17%	37,28%

Figura 2.5

3.a. TOXICIDAD DEL VENENO DE ESCORPIONES

Como se mencionó anteriormente el veneno de escorpiones puede ser obtenido a partir del homogenato de télsones o por veneno extraído de los animales, ya sea por presión manual o por estimulación eléctrica.

El contenido obtenido a partir de los homogenatos es muy útil para estudios de toxicidad o elaboración de sueros hiperinmunes, obteniéndose buena cantidad de veneno, pero con contenido de otros componentes tisulares del telson de los cuales se destaca la hemocianina, como se describirá en otro capítulo. Sin embargo, el veneno obtenido de homogenatos hace más dificultoso el aislamiento de y realización de estudios bioquímicos de los componentes tóxicos de este.

El veneno "ordeñado" es útil para todos los fines, y es el material de elección para los estudios de sus componentes. Sin embargo, debe mencionarse que el ordeñado tiene diferente composición según sea extraído por estimulación eléctrica o por presión manual (Sisson y col., 1990), si bien esto no afectaría la toxicidad del mismo ni el aislamiento de las principales toxinas.

Un comentario que debe realizarse, es que si bien no está bien entendido el motivo, en algunos países productores de antivenenos prefieren inmunizar con homogenato de télsones porque de esa forma obtienen una mejor respuesta inmune. Una posible explicación sería que los homogenatos podrían poseer formas poliméricas o no clivadas de proteínas, que serían más inmunogénicas que las mismas una vez clivadas y secretadas. Hay algunos trabajos que muestran una buena respuesta con anticuerpos neutralizantes por utilizando proteínas no tóxicas presentes en el veneno (Guatimosin y col. 1999).

En este capítulo se expondrán datos experimentales referentes a toxicidad determinada como dosis letal en ratones, de homogenatos de télsones de *T. trivittaus* y *T. confluens*, y de veneno ordeñado de *T. trivittatus*. Adicionalmente se brindan datos comparativos de la toxicidad de venenos de escorpiones del Sur de Africa (*Parabuthus* (*P.*) transvaalicus y *P. granulatus*) del Norte de Africa (*Buthus* (*B.*) occitanus y Androctonus (*A.*) australis) y del medio oriente (*Leiurus* (*L.*) quinquestriatus hebreus).

3.a.1- TOXICIDAD DEL VENENO DE TITYUS TRIVITTATUS

3.a.1.1. Toxicidad de homogenatos de télsones o veneno ordeñado de T. trivittatus

El homogenato de telsones es el método utilizado históricamente por el Instituto Nacional de Producción de Biológicos para la obtención de veneno de escorpiones, más que por una elección de modalidad, por una necesidad, dado que la obtención de veneno se hacía a partir de télsones donados por instituciones de diferentes provincias, principalmente Santiago del Estero.

Actualmente se está intentando obtener veneno ordeñado para formar *pooles* de veneno más homogéneos, que permitan utilizar mejor este recurso biológico extremadamente escaso y necesario para producir el antídoto a utilizar en los casos de envenenamiento.

Se considerarán datos históricos obtenidos del Servicio de Sueros Terapéuticos (SST) del Departamento de Vacunas y Sueros del I.N.P.B. y de datos obtenidos del Área Investigación y Desarrollo / Serpentario del mismo Instituto (AIyD/S). Los resultados de los mismos se expresarán como proporción de telson (método históricamente utilizado aunque poco exacto según lo comentado en el capítulo anterior) y como microgramos de proteína necesarios para matar al 50% de los animales de estudio.

Se trabajó con veneno proveniente de escorpiones de diferentes provincias y también con *pooles* formados por venenos de distintas provincias.

3.a.1.2. Materiales y Métodos

Los venenos en todos los casos fueron obtenidos por medio de el procesamiento de télsones o por medio de la estimulación eléctrica como se ha descripto previamente.

Los datos históricos fueron tomados de ensayos realizados en ratones de la cepa CF-1 de 18-22 g de peso, los cuales fueron inoculados por la vía intravenosa con homogenatos de télsones diluidos en NaCl 0,15 M.

Las experiencias fueron realizadas por el autor en el período entre los años 2001 – 2008, habiéndose publicado algunos de los datos (**de Roodt y col, 2001, 2005, 2009**).

En los otros casos los experimentos fueron realizados en ratones de la misma cepa o de la cepa NIH, de similares características, utilizando la misma vía o la intraperitoneal.

La determinación de la potencia letal se realizó de acuerdo a las recomendaciones de la OMS (WHO, 1971), la Farmacopea Mexicana (2000) y la Farmacopea del Estado de San Pablo (1996). Brevemente, grupos de 4 (SST) o 6 (AIyD/S) ratones CF-1 (SST y AIyD/S) o NIH (AIyD/S) de 18-22 g de peso, fueron inoculados. con homogenato de télsones o con veneno ordeñado, diluidos en NaCl 0,15 M por la vía i.v. o intraperitoneal.

Con el veneno obtenido por estimulación eléctrica, se procedió de la misma manera que la descripta para los homogenatos de télson.

Los ratones se controlaron durante 48 horas registrando la mortalidad. La dosis letal media o dosis letal 50% (DL₅₀) se definió como la dosis de veneno que mató al 50% de los ratones en un período de 48 hs. Esta se expresó en proporción de telson necesario (o cuando se pudo como microgramos de proteínas) para lograr el efecto deseado. Los resultados fueron analizados por regresión no lineal utilizando el *software Prism* \mathbb{R} (*GraphPad Inc.CA*).

La determinación de proteínas se realizó por el método de Bradford (**Bradford**, **1976**) utilizando el kit Protein Assay Kit ® de BioRad.

3.a.1.3. Resultados y discusión

Los resultados fueron muy variables aún entre muestras provenientes de télsones de una misma provincia.

La potencia del veneno de los animales provenientes de Buenos Aires fue la más baja. Si bien otras muestras presentaron bajas potencias, las de Buenos Aires en ninguna ocasión mostraron una potencia alta.

Cuando la potencia se expresó en microgramos de proteína, se observó que el veneno ordeñado posee una potencia letal por unidad de proteína mayor que el homogenato de télsones, algo que se podría esperar dado que en este caso con el ordeñado se está inyectando a los animales exclusivamente veneno.

Las diferencias entre las dosis determinadas por la vía endovenosa o intraperitoneal no parecen ser importantes cuando la potencia del veneno es buena, si bien las dosis intravenosas son ligeramente inferiores (muestran más potencia) que las intraperitoneales.

Los resultados se expresan en la **Tabla 3.a.1.3** y las Figuras **3.a.1**.

 $\label{eq:table_substitute} Tabla \ 3.a.1$ Dosis letales (DL $_{50}$) en ratones a obtenidos a partir de homogenatos de télsones de $\emph{T. trivittatus}$ de diferentes regiones de Argentina, o de veneno obtenido por estimulación eléctrica.

Procedencia	n °	Сера	Vía	DL_{50}	DL50	Telson/DL ₅₀	DL ₅₀ /
		de		(µg/ratón)	(mg/kg)		Telson
		ratón		,	(0 0)		
S. del Estero	1	CF-1	i.v.	ND	ND	0,16 (0,12-0,21)	6,25
66	2	CF-1	i.v.	ND	ND	0,41 (0,37-0,44)	2,43
66	3	CF-1	i.v.	ND	ND	0,16 (0,12-0,21)	6,25
66	4	CF-1	i.v.	ND	ND	0,18 (0,17-0,19)	5,56
66	5	CF-1	i.v.	ND	ND	0,26 (0,20-0,34)	3,85
66	6	CF-1	i.v.	ND	ND	0,30 (0,12-0,74)	3,33
66	7	CF-1	i.v.	ND	ND	0,17 (0,10-0,27)	5,88
66	8	CF-1	i.v.	ND	ND	0,18 (0,15-0,21)	5,56
66	9	CF-1	i.v.	ND	ND	1,25	<1,00
66	10	NIH	i.p	> 500	>25	>1,00	<1,00
66	11	NIH	i.p	> 500	>25	>1.00	< 1.00
Córdoba	12	NIH	i.p.	200 (187-214)	10,00	0,84 (0,79-0,90)	1,19
"	13	NIH	i.p.	80 (75-86)	4,00	0,38 (0,36-0,41)	2,63
66	13	NIH	i.v.	69 (68-71)	3,45 (3,40-3,55)	0,33 (0,32-0,34)	3,03
66	13	CF-1	i.v.	52 (33-81)	2,60 (1,65-4,05)	0,25 (0,16-0,39)	4,00
66	14	CF-1	i.v.	ND	ND	0,67	1,49
66	15	CF-1	i.v.	ND	ND	0,39	2,56
66	16	CF-1	i.p.	29 (23-36)	1,45 (1,15-1,80)	ND	ND
Santa Fe	17	NIH	i.p.	229 (225-232)	11,45(11,25-11,60)	0,63 (0,62-0,64)	1,59
66	17	NIH	i.v.	166 (23-1180)	8,30 (1,15-59,0)	0,46 (0,10-11,30)	2,17
66	18	NIH	i.v.	35 (15-54)	1,75 (0,75-1,20)	ND	ND
Entre Ríos	19	NIH	i.p.	114 (108-120)	5,70 (5,4-6,0)	0,26 (0,25-0,27)	3,84
66	20	NIH	i.v.	20.5 (20-21)	1,03	ND	ND
66	21	NIH	i.p.	10 (9-11)	0,50 (0,45-0,55)	ND	ND
Buenos Aires	22	CF-1	i.v.	ND	ND	>1,00	<1,0
66	23	CF-1	i.p.	> 237	> 11,85	0,95 (0,81-1,11)	$\approx 1,00$
66	24	NIH	i.p.	ND	ND	>1,00	<1,00
La Rioja	25	CF-1	i.p.	223 (139-356)	11,15 (6,95-17,8)	1,09 (0,68-1,75)	<1,00
Santa Fe-S. del Estero	26	CF-1	i.v.	31 (17-44)	1,55(0,85-2,20)	ND	ND
Catamarca –La Rioja	27	CF-1	i.p.	16	0,9 (0,60-1,15)	ND	ND
3			•	(12-23)	,		
S. Fe-E. Ríos - Córdoba	28	CF-1	i.v.	14.2	0,7 (0,5-1,0)	ND	ND
				(10-20)			

Tabla 3.a.1. Dosis letales encontradas para diferentes muestras de télsones de *T. trivittatus* de la Argentina. Los intervalos de confianza del 95% se expresan entre paréntesis. La segunda columna indica la referencia de datos para las figuras siguientes. Cuando la Dosis letal no se determinó exactamente se indica el valor por sobre el cual esta se encuentra (>1= mayor a 1 telson; > 500 μg= mayor a 500 μg; > 237 μg = mayor a 237 μg. Las diferentes muestras se han numerado para facilitar su observación e interpretación en los gráficos. ND: No Determinado; Los venenos obtenidos por estimulación eléctrica se indican en negrita . Las referencias 1 al 8 y 13 fueron realizadas por el SST y el resto por el AIyD/S.

Figuras 3.a.1.3.

Figura 3.a.1.3.1

DL_{50} expresadas en proporción de telson

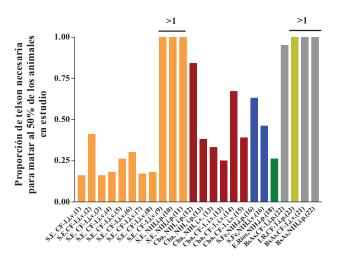


Figura 3.a.1.3.2

DL50 expresadas en proporción de telson

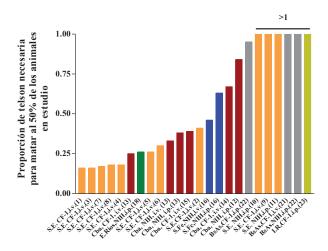


Figura 3.a.1.3.3

DL₅₀ expresadas en Proteínas

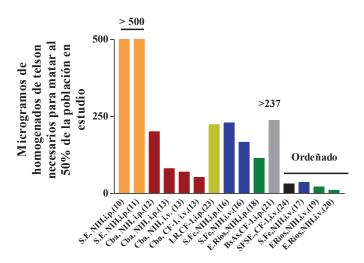
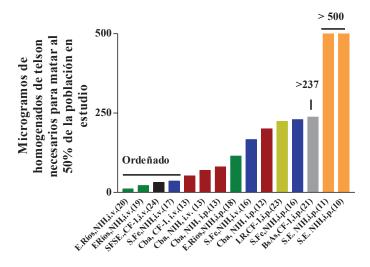



Figura 3.a.1.3.4

DL₅₀ expresadas en Proteínas

En las figuras se puede observar que las potencias letales presentan una amplia variación aún en *pooles* provenientes de una misma provincia, sea la potencia determinada como porción de telson o como microgramos de proteína.

Las variaciones pueden deberse a muchos factores, como tamaño de los télsones y el estado de llenado del telson, en el caso de los venenos obtenidos a partir de estos.

En todos los casos hay que considerar también posibles variaciones geográficas en cuanto a la toxicidad.

En los resultados presentes, no se puede indicar que el veneno de una determinada región sea más tóxico que el de otra. Posiblemente por la poca cantidad de muestras estudiadas, y en muchos casos lo escaso del material utilizado para determinar esta toxicidad. También se deben considerar las variaciones inherentes al tamaño y estado de llenado de los télsones (Capítulo 2). El número de pruebas realizadas muestra una tendencia pero no permite hacer una inferencia estadística.

En cuanto a la potencia por microgramo de proteínas, se observa que el veneno ordeñado posee mayor potencia que los homogenatos de telson, pues al medir sus proteínas se está midiendo sólo el veneno, mientras que al medir las proteínas de los homogenatos se miden todos los componentes del homogenato. Siendo los componentes tisulares constantes mientras que el contenido de veneno está condicionado a la cantidad de veneno existente en el telson al momento de la extracción, la diferencia observada debe ser atribuida a una mayor cantidad de proteínas no tóxicas en los homogenatos más que a una menor potencia del veneno así extraído.

Hay que mencionar acá que las potencias encontradas en los homogenatos de Santiago del Estero (**Fig. 3.a.1.3.2**), posiblemente no indiquen que la variabilidad en potencia letal de los escorpiones de esa provincia sea tan grande. Los ensayos que mostraron toxicidades muy bajas, es probable que se hayan visto influidas (además de por los otros factores mencionados) por una mala conservación de los télsones. Esta suposición se basa en que el resto de los ensayos y ensayos posteriores mostraron una buena potencia letal del veneno obtenido de ejemplares de dicha provincia. Por otro lado, en esa provincia se han producido envenenamientos graves con mortalidades lo que indicaría una potencia importante del veneno (**de Roodt y col. 2003**).

Por otro lado, la baja potencia de los homogenatos de telson del material proveniente de La Rioja (**Fig. 3.a.1.3.2**) parecería extraña considerando que la potencia letal por mg de veneno (si bien no es de las más potentes), es superior a la de las otras muestras que poseen una DL₅₀ cercana a 1 telson (**Fig. 3.a.1.3.3 y 3.a.1.3.4**). Esto indicaría que posee una potencia letal comparable (y en algunos casos mayor) a la de venenos de *T. trivittatus* de regiones en las que hubo accidentes graves en humanos (**Figuras 3.a.1.3.3 y 3.a.1.3.4**). Esta situación, posiblemente sea debida a la variabilidad en el tamaño de los telsones y a su estado de llenado. Como se mostró

anteriormente los télsones varían mucho en tamaño (Capítulo 2), y también puede variar su contenido de veneno.

La potencia letal expresada como proteínas o peso seco de veneno u homogenato de telson parecería ser más indicativa de la toxicidad del veneno de escorpiones de una misma especie ya que esta expresión no se ve afectad ni por el tamaño ni por el estado de llenado del telson.

3.a.2- TOXICIDAD DEL VENENO DE T. CONFLUENS

Tityus confluens, escorpión distribuido en el Norte de Argentina, ha sido mencionado como responsable de envenenamientos en humanos y potencial causante de muertes (**Ojanguren-Afflilastro 2005**; **Acosta 2005**), si bien esto nunca fue correctamente documentado.

En el año 2003, en la provincia de Jujuy se produjo la muerte de dos niños con signos de envenenamiento escorpiónico, hallándose en la casa *T. confluens* mayoritariamente y ningún ejemplar de *T. trivittatus* (hasta ese momento la única especie relacionada con mortalidad de humanos en la Argentina). En la provincia de Jujuy no se encontraría este escorpión siendo las especies de *Tityus* mayormente encontradas *T. confluens* y *T. argentinus* (Neder de Román y col. 2007).

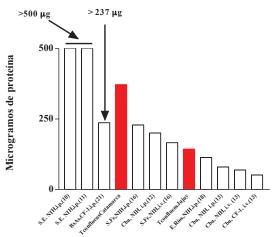
A principios del año 2006 en la provincia de Catamarca se produjo la muerte de un niño con signos de envenenamiento escorpiónico, hallándose en la casa solamente un ejemplar de *T. confluens* y ninguna otra especie de escorpión.

A fines del año 2005 en la provincia de Tucumán se produjo la muerte de una niña en la que el escorpión responsable de la picadura fue identificado como *T. confluens*.

Por ese motivo se estudió la potencia letal del veneno de *T. confluens* provenientes de las provincias de Jujuy y de Catamarca.

3.a.2.1. Materiales y Métodos

Veneno utilizado: se trabajó con homogenatos de telson de ejemplares de *T. confluens* de las provincias de Jujuy (12 ejemplares) y Catamarca (30 ejemplares), de acuerdo a la manera descripta previamente. Las proteínas se determinaron por el método de Bradford (**Bradford**, **1976**). La cantidad promedio de proteína por télsones fue de de 0,336 mg para los provenientes de Jujuy y de 0,161 mg para los de Catamarca.


Determinación de la potencia letal: se realizó en ratones de la cepa NIH, de 18-22 g de peso y por la vía intraperitoneal. Se inocularon 6 ratones por nivel de dosis en seis diferentes niveles de dosis. La dosis letal media se definió como la dosis de veneno expresada en μg/kg que mató al 50% de los animales en un período de 48 hs.

Resultado y discusión: las dosis letales encontradas fueron de 143 μ g (118-174) para el homogenato de los *T. confluens* provenientes de Jujuy, y de 372 μ g (342-405) para los de Catamarca. Expresada en mg/kg la potencia letal para de Jujuy es de 7,15 (5,9-8,7) y de 18,6 (17,1-20,3) para los de Catamarca.

En la **figura 3.a.2.1** puede observarse que las dosis de los homogenatos de telson están dentro de los valores hallados para los de *T. trivittatus*. Los de Catamarca están dentro de los valores menos potentes de los hallados, pero posiblemente esto se haya debido a problemas en el traslado y conservación de las muestras hasta su procesamiento. La potencia de los homogenatos de los télsones de los ejemplares de Jujuy se encuentra dentro de los rangos de mayor potencia obtenidos para *T. trivittatus*.

Figura 3.a.2.1.

DL₅₀ del veneno de *T. confluens* (barras rojas: *T. confluens*, barras blancas: *T. trivittatus*)

Figura 3.a.2.1. Dosis letales de homogenatos de télsones de *Tityus* de la Argentina expresadas en microgramos de proteína. Las barras en rojo indican las potencias notificadas para *T. confluens*.

3.a.3. TOXICIDAD DE OTROS VENENOS DE ESCORPIONES DE DIFERENTES REGIONES DEL MUNDO.

A fin de comparar la potencia letal del veneno de *T. trivittatus* frente al de otros venenos escorpiónicos, se procedió a determinar la potencia letal de los venenos de dos escorpiones del sur de África (*P. transvaalicus* y *P. granulatus*), de dos del norte de África (*B. occitanus* y *A. australis*), y uno del Medio Oriente (*L. quinquestriatus hebraeus*).

3.a.3.1. Materiales y Métodos.

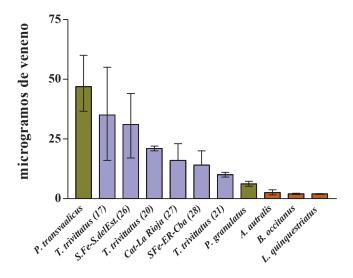
Los venenos desecados de estos escorpiones fueron obtenidos de Latoxan, Francia y donados por el Instituto Bioclon de la ciudad de México. Lotes de venenos desecados: *A. australis* (Lote 106030), *B. occitanus* (Lote 306030), *L. quinquestriatus*

haebraeus (Lote 1600309), P. transvaalicus (Lote 405040) y P. granulatus (Lote 016640).

La dosis letal se determinó en ratones NIH de 18-22 g de peso por la vía intraperitoneal, inoculando series de 8 animales con diferentes dosis de veneno. Las DL_{50} s se estimaron como se describió en los casos anteriores, y los valores se expresaron como veneno seco o como proteínas medidas por el método de Bradford (**Bradford 1976**).

3.a.3.2. Resultados y discusión

Las dosis letales estimadas se indican en la tabla **3.a.2**. Puede observarse que la dosis varía notablemente cuando es expresada en peso seco o en proteínas. Posiblemente estas diferencias puedan deberse a la gran cantidad de mucoproteínas que poseen estos venenos.


Tabla 3.a.2

Especie	DL ₅₀ i.p. (μg de peso seco)	DL ₅₀ i.p. (μg de proteínas)
P. trasvaalicus	132 (103 – 169)	46,9 (36,6 – 60,0)
P. granulatus	47 (39 -55)	6,2 (5,1 – 7,2)
B. occitanus	14 (12 - 16)	2,0 (1,7 – 2,3)
A. australis	8.0 (5-12)	2,5 (1,6 – 3,7)
L. quinquestriatus h.	11 (10 – 12)	2,0 (1,8 – 2,1)

En este caso se observa que los venenos de escorpiones sudafricanos (*Parabuthus*) posee una potencia letal mucho menor que la de los otros escorpiones (p< 0,05) y mucho más cercanas a las de *T. trivittatus*. Ver **Figura 3.a.3.1**.

Figura 3.a.3.1

Potencias letales de venenos crudos (ordeñados)

Figura 3.a.3.1. Dosis letales de los venenos de escorpiones de África, América y Medio Oriente. Obsérvese que los venenos de escorpiones de América del Sur y del sur de África poseen una dosis letal mucho más alta que los del hemisferio Norte. En la figura se indican las barras de error del intervalo de 95% de confianza de las dosis letales halladas. Las potencias se expresan en cantidad de proteínas medidas por el método de Bradford.

Esta diferente toxicidad parece observase también respecto al veneno de algunos escorpiones de América del Norte como los pertenecientes al género *Centruroides*. Si bien no necesariamente la toxicidad mayor o menor en ratones indica mayor o menor toxicidad en los humanos, se debe mencionar que en el norte de África y en Medio Oriente, la mortalidad por escorpiones llega a ser importante cuando se la compara con la que ocurre en Sudamérica. Por otro lado tanto en México como en el norte de África o el Medio Oriente, se registran muertes por picaduras de escorpión en adultos, lo que no es común en Sudamérica ante la picadura de *Tityus*.

También se debe mencionar en este caso, que a pesar de poseer dosis menos potentes, los *Parabuthus* debido a su tamaño, pueden inocular cantidades importantes de veneno. Por otro lado los del norte de África no son tan corpulentos, si bien su veneno es altamente tóxico. Esta falta de relación entre el tamaño del escorpión y su toxicidad puede verse en México en el caso de *Centruroides noxius*, que es de los *Centruroides* más pequeños de México, y sin embargo el que produce la mayor cantidad de accidentes graves en dicho país, aun respecto a otros *Centruroides* de mayor tamaño.

Estos datos como los obtenidos respecto al tamaño corporal de los escorpiones de diferentes regiones de Argentina, refuerzan la conclusión que el tamaño del animal no está relacionado con la toxicidad. Sin embargo, al referirnos a animales de características similares y sólo en este caso, la dosis sí hace a la toxicidad, tal como lo expresó Paracelso "Dosis sola facit venenum" (Paracelso 1493-1541), por lo que un animal de mayor tamaño puede inocular mayor cantidad de veneno, lo que a igual toxicidad del mismo producirá un envenenamiento de mayor gravedad.

3.b. LESIONES PRODUCIDAS POR EL VENENO DE T. TRIVITTATUS

3.b.1. ENVENENAMIENTO EXPERIMENTAL EN RATONES.

3.b.1.1 Signos clínicos.

Como se mencionó, la toxicidad del veneno se debe a la acción conjunta de las diversas neurotoxinas que este posee, y los signos de envenenamiento son más evidentes en los órganos internos, dada la acción de estas sobre el funcionamiento del sistema nervioso autónomo.

El envenenamiento por veneno de *T. trivittatus* en ratones es responsable de los mismos signos observados en los envenenamientos humanos, los que fueron descriptos previamente (de Roodt y col. 2001).

La inoculación intravenosa del homogenato de télsones o de veneno ordeñado de *T. trivittatus* a ratones de la cepa CF-1 (18 – 22 g de peso) provoca los típicos signos que se observan en la siguiente frecuencia: taquipnea, piloerección, sialorrea, lagrimeo, sudoración, diarrea y exoftalmia moderada. La intensidad relativa de esos signos y el intervalo de tiempo tras la inyección en que aparecen, son dependientes de la dosis inoculada. **Figura 3.b.1**.

Figura 3.b. Sudoración y piloerección en ratones inoculados con veneno de T. trivittatus.

Figura 3.b.1

Figura 3.b.2.

Figuras 3.b.1 y 2. Sudoración y piloerección en ratones inoculados con veneno de *T. trivittatus*. Obsérvese en ambas figuras la profusa sudoración y piloerección observada en todos los animales. Fotos del autor.

Con dosis altas (de aproximadamente 5 DL₅₀) la taquipnea y la piloerección se notan pocos minutos tras la inyección. Tras los 6 minutos posteriores a la inoculación se observa abundante sialorrea. Tras los 20 minutos se observa sudoración, exoftalmia moderada y diarrea.

Cuarenta minutos tras la inoculación, los animales presentan contracturas aisladas de los músculos extensores (en algunos, estas preceden a convulsiones), y disnea severa la cual progresa rápidamente a la muerte alrededor de los 60 minutos postinoculación.

La piloerección se presenta claramente a los 20 minutos posteriores a la inoculación de dosis medias y bajas de veneno (1 a 4 DL50). La inoculación de estas dosis es seguida por una sudoración profusa y diarrea. Estos animales sobreviven de 4 a 6 horas y durante ese intervalo pueden perder más del 10% de su peso corporal por la pérdida de fluidos por sudoración, sialorrea, epífora y diarreas.

La evolución del envenenamiento con diferentes dosis puede observarse en la **Tabla 3.b.1.**

3.b.2 ANATOMÍA PATOLÓGICA.

Las observaciones anatomopatológicas más significativas en el envenenamiento por *Tityus trivittatus* el color rosado-rojizo de los pulmones y su aparente aumento de tamaño y la congestión de vasos viscerales y serosos.

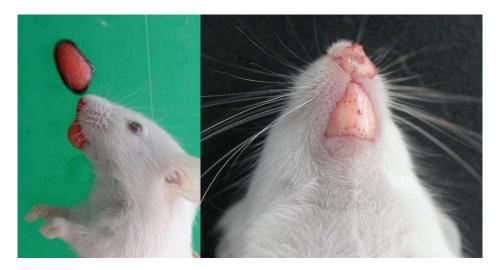

En envenenamientos graves por *Tityus* e pueden observar hemorragias por la boca y epistaxis (**Figura 3.b.3**) debidas a hemorragias producidas en el tracto pulmonar (**Figura 3.b.4**) posiblemente debidas a fenómenos hipertensivos causados por la hiperestimulación adrenérgica.

Tabla 3.b.1. Evolución de los signos clínicos del envenenamiento con homogenato de télsones de *T. trivittatus*.

Tiempo	> dosis	dosis ½	< dosis	< <dosis< th=""></dosis<>
(min, seg)	$(5 DL_{50})$	$(2 DL_{50})$	$(1.5 DL_{50})$	$(< 1.0 DL_{50})$
1′ 17′′	blefaroptosis	blefaroptosis	-	-
126′′	piloerección	-	-	-
2'47''	-	disnea-taquipnea	-	-
3′	-	-	Adinamia	-
4′07′′	-	-	blefaroptosis	-
4′38′′	actitud ortopneica	-	-	-
	sialorrea	sialorrea muy	-	-
6'	abundantísima	abundante, pérdida de la propioceptividad		
6'26''	-	-	Sialorrea	-
13′50′′	-	-	Lordosis	-
14′10′′	-	piloerección en la cabeza	-	-
17′42′′	epífora	epifora	epífora y trastornos de la propioceptividad	epifora
18′47′′	sudoración	-	-	-
19'20''	leve exoftalmia	-	-	-
20'26''	diarrea	-	-	-
23′30′′	-	piloerección generalizada	piloerección evidente	-
35′04′′	-	leve exoftalmia	leve exoftalmia	-
35′40′′	contracciones esporádicas de músculos extensores	-	-	-
36′35′′	-	-	relajación del esfinter anal	-
80′	-	sudoración profusa y contracciones musculares con lordosis de la zona lumbo sacra	sudoración profusa	-
90′	midriasis	-	-	-
98′	_	disnea marcada	-	-
100′	-	_	Midriasis	-

Tabla 3.b.1. Evolución del envenenamiento experimental por el veneno de *T. trivittatus* con diferentes dosis letales de veneno.

Figura 3.b.3. Sangramiento por boca y nariz de ratones inoculados con veneno de Tityus.

Figura 3.b.4. Pulmones de ratones congestivos, edematizados y con áreas hemorrágicas, inoculados con veneno de *Tityus*. Foto. Dr. Alejandro Alagón, IBT-UNAM, México.

En algunos casos se puede observar al corazón en sístole, lo que se acompaña generalmente de pulmones congestionados, edematizados y con focos hemorrágicos (**Figura 3.b.5**).

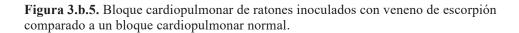


Figura 3.b.5. Se observan los bloques cardiopulmonares de ratones inoculados con veneno de *Tityus* (V) o con solución salina (NaCl 0.15 M) estéril (C). En el lado derecho se puede observar el corazón normal (C) en diástole y es claramente distinguible el color normal de la superficie pulmonar, sin observarse congestión, edema y otra anormalidad. En el lado izquierdo se puede observar el corazón en sístole (por la hiperestimulación adrenérgica) y el tejido pulmonar congestivo y edematizado con focos de hemorragias en sus superficie, posiblemente debidas a la rotura de vasos a causa de la hipertensión. Foto. Dr. Alejandro Alagón, IBT-UNAM, México.

Puede observarse congestión hepática y en órganos abdominales causado por los fenómenos hipertensivos arteriales e hipotensivos combinados, y la disminución del volumen minuto debida a la taquicardia que se presenta en casi todos los casos, lo que conduce al éstasis sanguíneo en el lecho visceral, causante de congestión y/o edema en diferentes tejidos (**Figura 3.b.6**).

Otra alteración que se puede ver es el aumento del peristaltismo intestinal, causado por la estimulación colinérgica a nivel del lecho esplácnico (**Figura 3.b.7**), si bien esta también puede ser adrenérgica.

Figura 3.b.6. Alteraciones viscerales macroscópicas en ratones inoculados con veneno de *Tityus*.

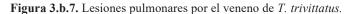
Figura 3.b.6. El ratón de la izquierda fue inoculado con solución salina estéril (NaCl 0.15 M) y el de la derecha con veneno de *Tityus*. Puede observarse en el animal inoculado con veneno el color más oscuro del hígado debido al éstasis sanguíneo abdominal, lo que también se manifiesta por la congestión de algunos vasos superficiales. El hígado agrandado por la congestión es bien evidente y también se observa la protrusión del bazo, con la aparición de su cabeza por sobe el hígado en la región costoabdominal izquierda. Pudo observarse en los animales movimiento peristáltico de segmentación por estimulación colinérgica. En este animal también puede observar se epistaxis y espuma sanguinolenta en la boca debidas a hemorragias en los pulmones. Foto. Dr. Alejandro Alagón, IBT-UNAM, México.

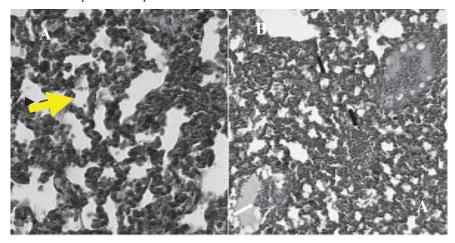
3.b.3. HISTOPATOLOGÍA

En todos los casos los ratones fueron inoculados con $\,1\,$, $\,2\,$ o $\,3\,$ DL $_{50}$ de los respectivos venenos. Tras la muerte de los animales, en cada caso a estos se les realizó

inmediatamente la necropsia ,observando las lesions anátomopatológicas (ver puntos anteriores) y tomando muestras para en estudio histopatológico.

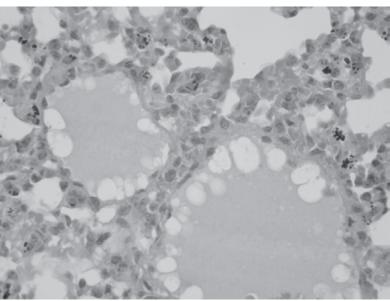
Se tomaron muestras de pulmones, corazón, páncreas, hígado y otros órganos seleccionados los cuales fueron fijados en formaldehido al 10% en NaCl 0.15 M con solución tampón de fosfatos 0.1 M a pH 7.4.


Los tejidos fueron sometidos a los procesos de deshidratación pertinentes y embebidos en parafina, tras lo cual se realizaron los cortes y las coloraciones para microscopía óptica (Bancroft and Stevens, 1990).


3.b.3.1. Histopatología del envenenamiento por *T. trivittatus*.

El examen microscópico de los pulmones muestra capilares alveolares congestivos, infiltración celular y paredes alveolares engrosadas. Se observa infiltración celular. Aparecen áreas en las cuales la lesión dominante parece ser el edema pulmonar con presencia de material hialino y áreas con hemorragia pulmonar (**Figura 3.b7**). Los vasos pleurales y pericárdicos se observan congestionados.

En los riñones algunos glomérulos aparecen retraídos y contienen eritrocitos en los espacios de Bowman. Se observan algunas alteraciones tubulares focales con células aumentadas de tamaño de citoplasma claro.


En el hígado se observan alteraciones focales de intensidad variable que varían desde una congestión discreta de la venas centrolobulillares hasta venas centrolobulillares y espacios sinusoidales extremadamente dilatados. El páncreas y las glándulas salivares pueden presentar hemorragia y necrosis con infiltración de polimorfonucleares rodeadas de un edema abundante. Ver **Figuras 3.b.7 a 3.b.11**.

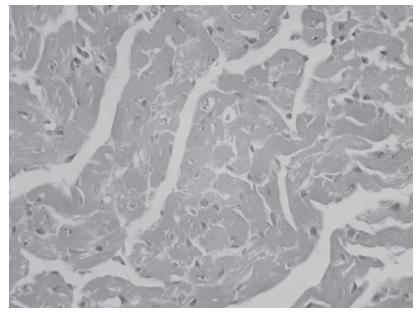

Figura 3.b.7. Edema pulmonar, hemorragia y congestión vascular después de la inyección de homogenatos de télsones de *T. trivitattus* (5.0 LD₅₀).**A**: congestión importante de capilares alveolares y una imagen consistente con fagocitosis eritrocítica (flecha amarilla). Hematoxilina-eosina 400x. **B**: Presencia de edema alveolar, hemorragia pulmonar y congestión arteriolar. Hematoxilina-eosina 200 x. (**de Roodt y cols. 2001**).

Figura 3.b.8

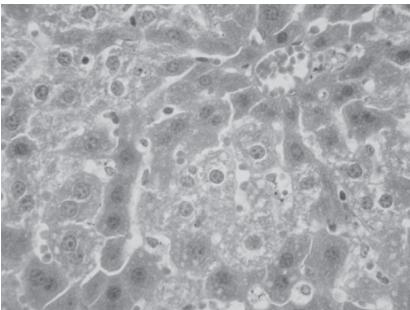

Figura 3.b.8. Pulmón de ratón inoculado con veneno de *T. trivittatus*. Congestión marcada y engrosamiento de los septos alveolares, edema intraalveolar, edema y hemorragia. Ruptura focal de la estructura alveolar. (H & E, 400x).

Figura 3.b.9

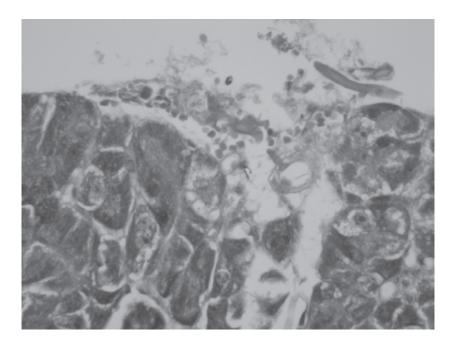

Figura 3.b.9. Cambios cardíacos consistentes en fragmentación focal de las fibras miocárdicas y edema intrafibrilar en ratón inoculado con veneno de *T. trivittatus* (H&E, 400x).

Figura 3.b.10

Figura 3.b.10. Hígado de ratón inoculado con veneno de *T. trivittatus* mostrando esteatosis, congestion sinusoidal, vacuolización y necrosis de hepatocitos (H&E, 400x).

Figura 3.b.11

Figura 3.b.11. Hemorragia peripancreática y signos de injuria epiteliarl severa en los acinos en ratón inoculado con veneno de *T. trivittatus* (H&E, 400x).

3.b.3.2. Histopatología del envenenamiento por *T. confluens*.

En el envenenamiento por *T. confluens* también se observan las lesiones sistémicas con los mismos patrones histopatológicos observados por la inyección de veneno de *T. trivittatus*. En los pulmones de animales inoculados con este veneno se puede observar edema, engrosamiento septal y congestión vascular con focos hemorrágicos (**Figuras 3.b.12 y 3.b.13**).

Figura 3.b.12.

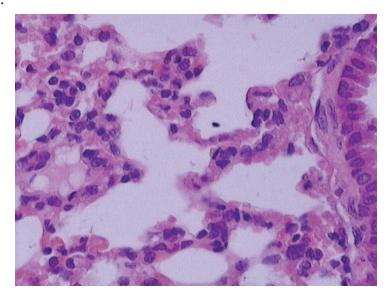


Figura 3.b. 12. Engrosamiento septal y rotura de alvéolos pulmonares, con presencia de material eritrocitario en los capilares alveolares, los que se observan congestivos e infiltración celular. Se observa también congestión u edema intraalveolar. H&E, 200x

Figura 3.b.13.

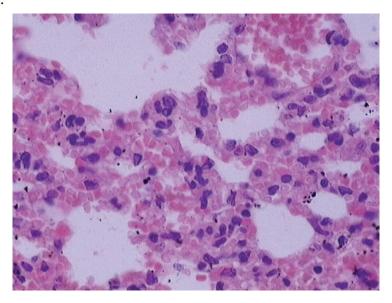
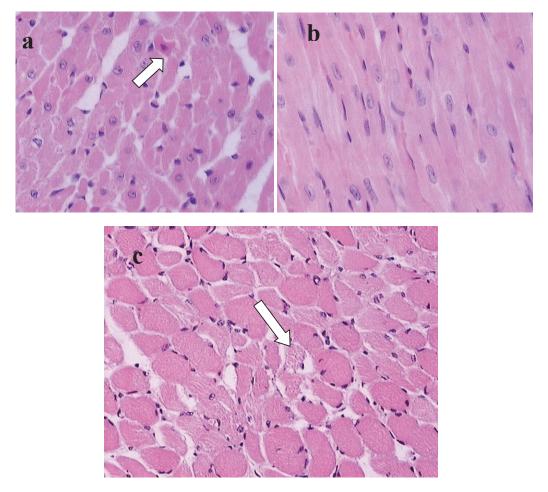



Figura 3.b.13. Engrosamient o de paredes alveolares, congestión y edema e importantes hemorragias inter e intraalveolare s que se observa bien en la esquina superior izquierda. H&E, 200x.

En los corazones pueden observarse en la mayoría de las veces (80-100%) lesiones eosinofílicas y focos de necrosis. La presencia de estas lesiones posiblemente esté condicionada al tiempo de evolución del envenenamiento **Figuras 3.b.14.a, b y c**.

Figura 3.b.14. Lesiones miocárdicas

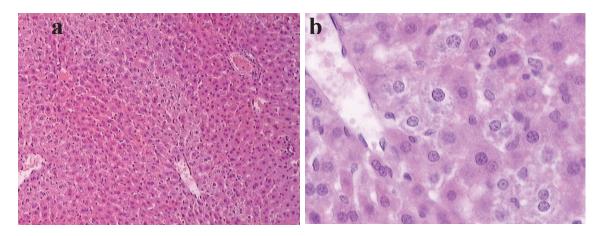


Figura 3.b.14. Lesiones eosinofílicas en el miocardio. Obsérvese el ligero edema interfibrilar. Se observa edema intrafibbrilar y fragmentación focal de las fibras y necrosis **(a)**. Hay condensación citoplasmática y cuerpos eosinofílicos símil-apoptóticos **(b)** (flecha). H & E, 200x. La figura c muestra cambios isquémicos consistentes en edema intrafibrilar con fragmentación focal de las fibras (flecha). H & E, 200x.

En el tracto gastrointestinal también se observan algunas alteraciones patológicas en la arquitectura histológica. En el hígado de los ratones se observa vacuolización citoplasmática difusa y congestión sinusoidal. **Figuras 3.b.15.a y b.**

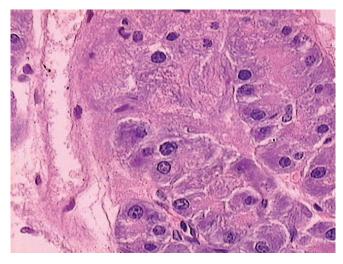
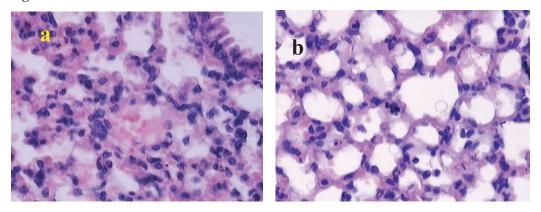

De acuerdo a lo observado en otros modelos experimentales también en ese caso pudimos constatar lesiones en el páncreas **Figura 3.b.16.**

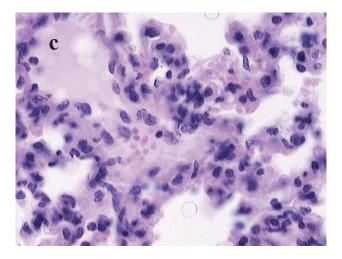
Figura 3.b.15.a y b.

Figura 3.b.15. Hígado de ratones inoculados con veneno de *Tityus confluens*. La figura a muestra congestión sinusoidal (H&E 100). La figura b muestra vacuolización citoplasmática focal con citoplasma granular y congestión vascular (H & E 40x).

Figura 3.b.16.


Figura 3.b.16. Lesiones pancreáticas. Presencia de hemorragias peripancreáticas y signos de injuria epitelial severa de los acinos (H & E, 400x).

3.b.4. LESIONES PRODUCIDAS POR EL VENENO DE OTRAS ESPECIES DE ESCORPIONES.


Se estudió el daño producido en ratones por los venenos de *P. transvaalicus*, *P. granulatus*, *B. occitanus*, *A. australis* y *L. quinquestriatus* h.

En todos los casos se observaron lesiones histopatológicas en el tejido pulmonar, cardíaco del mismo tipo que las halladas para las especies de *Tityus* de la argentina. **Figuras 3.b.17.**

Figura 3.b.17.

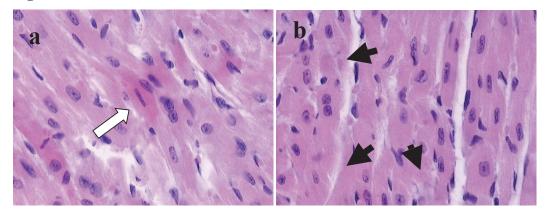
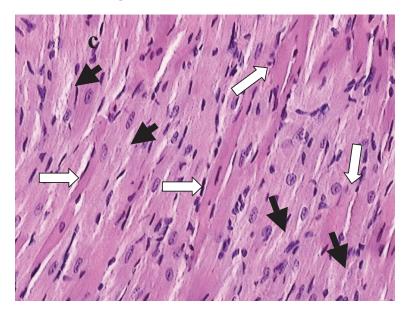


Figura 3.b.17. Pulmones de ratones inoculados con venenos de *Buthus occitanus* y *A. australis*, Hematoxilina y Eosina 20x. Edema intraseptal (**a y b**) y hemorragia intra e interalveolar (**a y c**).



También en el miocardio se encontraron lesiones que variaron de gravedad desde injuria eosinofilica hasta necrosis. **Figura 3.b.18.**

Figura 3.b.18.

Figura 3.b.18 a) Las lesiones cardíacas más importantes observadas fueron infiltración eosinofílica (flecha blanca) de las fibras musculares y b) lesiones necróticas generalizadas (flechas negras). H & E. Arriba 20x, abajo (c), se muestran ambos tipos de lesiones (H&E 10x).

3.b.5 COMENTARIOS

La inyección de homogenatos de telson o veneno de *T. trivittatus* o *T. confluens* producen en los ratones signos similares a aquellos descriptos en los modelos animales inyectados con venenos de otras especies de *Tityus* y de otros géneros de escorpiones, lo

que se comprobó también en este caso respecto a las lesiones producidas por escorpiones de África y Medio Oriente.

Los signos observados en los ratones inoculados son consistentes con aquellos descriptos en los accidentes de humanos producidos por estos escorpiones en la Argentina (Martino y col. 1979, Tomassone y col. 1994; Del Valle Luna y Luna 1997; Gordillo y col. 2000; de Roodt y col., 2001, 2009).

Los ratones inoculados con 2.0 - 5.0 dosis letales de veneno de T. trivittatus mueren rápidamente tras la inoculación. El síndrome de envenenamiento progresa rápidamente, en ocasiones sin mostrar mucha signos, hasta la muerte. En los ratones inyectados con dosis medianas y bajas ($1.5 \, \mathrm{DL}_{50}$ o menores), se observa sialorrea probablemente debido a la estimulación de los receptores colinérgicos y adrenérgicos (**Correa y col. 1997**), lagrimeo, diarreas y particularmente sudoración profusa de origen adrenérgico, resultando en una deshidratación severa con importante pérdida de peso.

El edema pulmonar y la falla cardíaca con shock irreversible son considerados entre las causas más frecuentes de muerte tanto en animales de experimentación como en humanos picados por *Tityus* (Cupo y col. 1994; Freire-Maia 1974; Freire Maia 1990).

El examen microscópico de los pulmones de los ratones inoculados con venenos de *T. trivittatus* o *T. confluens* muestra la presencia de material hialino intra-alveolar y hemorragias pulmonares. Lo mismo se observó en pulmones de animales inoculados con los otros venenos de escorpiones.

La patogénesis del edema producido por el veneno de escorpión es compleja (Amaral y col. 1994; Amaral y Rezende 1997; D'Suze y col. 1999), involucrando falla ventricular izquierda, debida a la hipertensión arterial y la taquicardia sinusal (Cupo y col. 1994; Freire-Maia 1990), y aumento de la permeabilidad vascular debida a la liberación de bradiquinina, (Rothschild y Castania 1976), prostaglandinas (Amaral y Rezende 1997) e histamina (Cunha-Melo y col. 1987). La participación de las kininas es consistente con la observación de lesiones pancreáticas en algunos de los animales inyectados con venenos de *Tityus trivittatus* o *T. confluens*, tal como se describió previamente para el veneno de otras especies de *Tityus* tras su inoculación a animales de experimentación (Correa y col. 1997; D'Suze y col. 1995; D'Suze y col. 1999). De este modo, además de la falla cardíaca por los motivos antes mencionados, la hipovolemia debida a la excesiva pérdidas de fluidos y la acumulación de sustancias vasodilatadoras potentes (kininas, prostaglandinas e histamina), podrían contribuir al

colapso terminal refractario a la acción hipertensiva de la adrenalina, tal como fue descripto para el envenenamiento por escorpiones de Arabia (Ismail 1995).

Respecto a los daños en el miocardio se mencionan factores directos como una acción tóxica directa sobre el músculo cardíaco, y también una acción indirecta debida a la hiperestimulación del sistema nervioso autónomo, si bien posiblemente los mecanismos que llegan a afectar a la bomba cardíaca sean mixtos (Amaral y Rezende 1997).

Se ha indicado el edema pulmonar como causa más frecuente de la muerte en el envenenamiento por picadura de *Tityus* (Cupo y col., 1994; Freire-Maia y col. 1990; 1994; D'zuse y col. 1999). Los hallazgos patológicos experimentales encontrados muestran lesiones pulmonares más compatibles con el síndrome de *distress* respiratorio del adulto que con las del edema pulmonar de origen cardiogénico. No obstante, no se puede descartar la contribución de la insuficiencia cardíaca por sobrecarga y/o daño miocárdico secundaria al exceso de catecolaminas circulantes (Amaral y col. 1994), así como a las alteraciones del balance electrolítico (Gueron y col., 1992), en la génesis de la lesión pulmonar inducida por el veneno de *T. trivitattus*.

Los resultados experimentales en animales inoculados con los venenos de T. discrepans y T. serrulatus y los datos clínicos de los envenenamientos por estos escorpiones sugieren que la fisiopatología de la lesión pulmonar es bastante compleja (D'Zuse y col. 1999; Freire Maia y col. 1989; Amaral y Rezende 1997; Amaral y col. 1994; Gueron e Ilia 1996). Se ha enfatizado la importancia de la liberación de agentes vasoactivos como bradiquinina (Rothschild y Castania 1983; Rothschild y col. 1976, 1986; Fatani y col. 1998); prostaglandinas (Fatani y col. 1998) e histamina (Cunha-Melo y col. 1987), ya que tanto la heparina, el BN-52021 (antagonista del factor agregante plaquetario) como la aprotinina (inhibidor de kalicreína-kinina) resultan efectivos para prevenir la lesión pulmonar por venenos de escorpiones (Ismail y col. 1992; Freire-Maia y De Matos 1993). La refractariedad de la hipotensión terminal al efecto hipertensor de la noradrenalina, podría deberse a la acumulación de sustancias vasodilatadoras, muy probablemente kininas y/o prostaglandinas (Ismail 1995). Esta interpretación está apoyada por la frecuente concurrencia de pancreatitis aguda en niños picados por algunas especies escorpiones, así como en animales inoculados con veneno (Bartholomew 1970; Bartholomew y col. 1977; Pantoja y col. 1983; Sofer y col. 1991), pancreatitis también observada en el presente trabajo.

En accidentes humanos por T. serrulatus se han observado incrementos en los niveles de IL-1 α , IFN γ ; IL-6 y GM-CSF, (**Sofer y col. 1996**; **Magalhaes y col. 1999**) si bien los incrementos masivos, característicos del síndrome de respuesta inflamatoria sistémica, sólo ocurrirían en los cuadros mas graves.

Por otra parte, tanto el veneno entero de *T. serrulatus* como algunas fracciones pueden afectar otros órganos, ya sea directamente o a través de las alteraciones del sistema nervioso autónomo (Correa y col. 1977; D'zuse y col. 1999; Freire- Maia y col. 1994; Daisley y col. 1999), lo que podría explicar las lesiones observadas en glándulas exocrinas y riñón.

Todos los hallazgos anátomopatológicos e histopatológicos provocados por los venenos de *T. trivittatus* y *T. confluens* son coherentes con aquellos producidos en los envenenamientos experimentales por Buthidae en general, y por *Tityus* en particular.

4. CARACTERÍSTICAS BIOQUÍMICAS DEL VENENO DE *TITYUS TRIVITTATUS* DE LA ARGENTINA.

Se realizó el estudio del homogenato de télsones y de veneno ordeñado de *T. trivittatus* de diferentes regiones del país. En algunos casos se tomaron muestras de *pooles* de télsones donados y en otros casos de material obtenido por capturas *in situ* para estos efectos.

4.a. HOMOGENATOS DE TELSON DE T. TRIVITTATUS

Se estudió la cantidad de proteínas obtenidas de télsones de escorpiones obtenidos en distintas provincias argentinas y su relación con el peso seco de los mismos. También se realizó el SDS-PAGE y su estudio cromatográfico, por tamiz molecular y por cromatografía en fase reversa.

4.a.1. Estudio de la cantidad de proteínas obtenidas a partir de télsones de *T. trivittatus*.

La cantidad de proteínas obtenidas a partir de homogenatos de télsones de *Tityus* trivittatus provenientes de diferentes regiones de la Argentina (n= 430) se determinó por diferentes métodos.

Los télsones utilizados provinieron de Santiago del Estero (n= 111), Córdoba (n= 40), Santa Fe (n= 198), Entre Ríos (n= 47) y La Rioja (n= 34).

Las proteínas fueron estimadas por el método de Bradford (como se mencionó anteriormente) o por la determinación de la A_{280} m y estos valores se refirieron a la cantidad de proteína por telson o por mg de telson. Se estudió también la relación entre cantidad de proteínas y el peso seco de los télsones.

Los datos obtenidos de las muestras estudiadas se indican en la tabla 4.a.1.

Veneno	n	Peso del telson	Prot. Bradford	Prot/Peso	A_{280} nm /	
		(mg/telson)	(μg/telson)	$(\mu g/mg)$	telson	
Entre Ríos	47	4,987	432	86,62	0,973	
Santa Fe	198	4,076	364	89,30	1,068	
Córdoba	47	3,761	238	63,28	0,708	
S. del Estero	111	3,333	196	58,81	0,603	
La Rioja	34	2,770	219	79,06	0,799	
Todos	430	$3,785 \pm 0,831$	$289,8 \pm 102,7$	$75,41 \pm 13,74$	$0,830 \pm 0,19$	

Tabla 4.a.1. Cantidad de proteínas extraídas de muestras de télsones de *T. trivittatus*.

Se observó una regresión lineal positiva entre todas las variables medidas, siendo mayor a 0,5 en todos los casos.

La cantidad de proteínas medidas por Bradford y la A_{280} nm presentó una buena relación. Esta se encontró tanto respecto a las medidas en los sobrenadantes de los homogenatos de telson (r^2 = 0,75) como respecto al peso (r^2 = 0,81). También fue buena la relación encontrada entre la cantidad de proteína por mg de telson y la cantidad de proteínas determinadas por el método de Bradford (r^2 0,65) y su A_{280} nm (r^2 = 0,93). Estos datos fueron coincidentes con observaciones preliminares previas realizadas con materiales similares (**de Roodt y col. 2005**).

La cantidad de material obtenida a partir de télsones de ejemplares del Centro y Norte del país, de zonas más secas (Córdoba, Santiago del Estero y La Rioja), fue ligeramente menor que aquella obtenida de aquellos de zonas más húmedas (Santa Fe y Entre Ríos), tanto en el peso seco como en el contenido de proteínas valorado por dos métodos diferentes.

4.6 ESTUDIO ELECTROFORÉTICO DE LOS HOMOGENATOS DE TÉLSONES DE T. TRIVITTATUS.

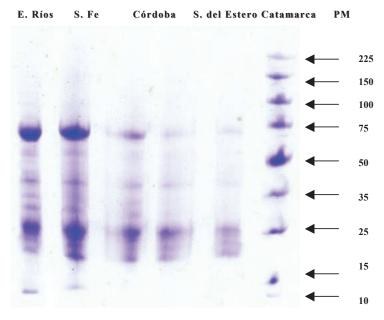
4.b.1 Materiales y Métodos

Se realizó el análisis electroforético de los sobrenadantes de homogenatos de télsones de *T. trivitattus* provenientes de las ciudades de Santa Fe, Paraná, Santiago del Estero, Córdoba y Catamarca. Este se realizó en geles de poliacrilamida/ bisacrilamida

homogéneos al 15% (Santa Fe, Entre Ríos, Santiago del Estero, Córdoba y La Rioja) y en gradiente al 8-25% (Santiago del Estero, Córdoba, Catamarca, Entre Ríos y Santa Fe) conteniendo dodecilsulfato de sodio, en condiciones no reductoras, según la técnica descrita por Laemmli (1970). Los geles en gradiente se corrieron en minigeles en un sistema PhastSystem (Pharmacia) según las recomendaciones del fabricante. En ambos casos los geles se corrieron con tris-tricina para resolver mejor los componentes de bajo peso molecular (Schagger y von Jagow 1987).

Con el objeto de correlacionar las movilidades de las bandas de proteína con sus masas moleculares, se corrieron en los geles marcadores de peso molecular (Promega Broad Range 10-225 kDa).

Luego de la separación, los geles se fijaron durante 2 horas en una mezcla de metanol, ácido acético, agua (4:1:5 en volumen) y se tiñeron con Azul brillante de Coomasie.


4.b.2 Resultados

El análisis electroforético se presenta en la **Figura 4.b.1** Si bien los perfiles obtenidos en geles en gradiente no son idénticos, en general presentan perfiles similares, con componentes de movilidades correspondientes a pesos moleculares elevados (140 y 150 kDa) intermedios (32 y 40 kDa) y bajos (6.0, 11 y 13 kDa).

En la Figura **4.b.2** se pueden observar los perfiles realizados en un gel homogéneo en dónde se observa la similitud entre los diferentes homogenatos y las diferencias entre estos y el veneno ordeñado.

Los patrones electroforéticos de los homogenatos mostraron una fuerte banda entre los 75 y 50 kDa de PM que correspondería a la hemocianina de estos artrópodos, hecho por el cual se encuentra presente en todas las muestras. Esto no se observa en las corridas de veneno ordeñado.

Figura 4.b.1

Figura 4.b.1.a. Minigel en gradiente 8-25% en Tris-Tricina corrido con una muestra de $6 \mu g$ de veneno en condiciones reductoras. Los minisgeles se corrieron en un PhastSystem (Pharmacia LKB) y se colorearon con azul brillante de Coomasie.

Figura 4.b.1.b

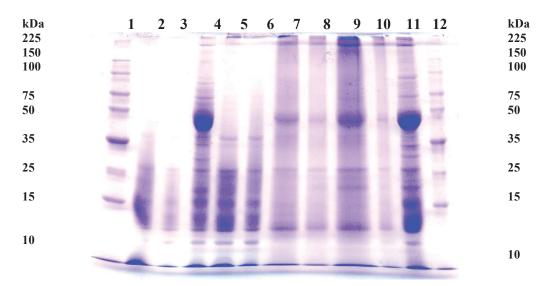


Figura 4.b.1.b. Gel al 12.5 % en Tris-Glicina corrido con una muestra de 10 μg de veneno en no reductoras. Los geles se corrieron en una cuba MiniProteanII (BioRad) y se colorearon con azul brillante de Coomasie. 1) Marcador Promega. 2) Santa Fe (ordeñado); 3) E. Ríos (ordeñado); 4) E. Ríos (homogenato); 5) E. Ríos (ordeñado); 6) E. Ríos (ordeñado); 7) Santa Fe (homogenato); 8) S. del Estero (homogenato); 9) E. Ríos (homogenato); 10) Córdoba (homogenato); 11) La Rioja (homogenato); 12) Marcador Promega.

En las muestras de homogenatos de télsones, mucho del material hallado no corresponde exactamente al veneno sino que, como en el caso de la hemocianina, son componentes ajenos al mismo.

Pueden observarse en todas las muestras bandas cercanas a los 10 kDa. El material en correspondencia a esa banda está relacionado con las neurotoxinas de estos artrópodos que poseen una masa molecular de 3-7 kDa. Estas neurotoxinas, dadas las condiciones de corrida aparecerían en una banda indiferenciada inferior y cercana al marcador de 10 kDa. En estos geles se puede discernir en ese peso molecular dado que la tricina permite resolver entre componentes de baja masa molecular (**Schagger y von Jagow 1987**). Los geles en los que se usa como buffer glicina en lugar de tricina, no llegan a brindar una buena resolución de componentes por debajo de los 15 kDa.

En los geles en gradiente, en tres de los venenos esta banda de componentes de bajo peso molecular no se observa bien en la tinción con Coomasie, si bien puede observarse en la tinción con plata que permite detectar proteínas en el orden de 10 ng por banda (Margni 1990). Esto indica que su ausencia se debe a la cantidad de proteínas corridas y la correspondiente presencia de los componentes de ese peso molecular en las muestras, que no sería suficiente como para ser detectada con la sensibilidad de la coloración de Coomasie que es de 1-2 µg por banda (Harlow y Lane 1988). Por otro lado, estudios de toxicidad de homogenatos crudos o de sus fracciones cromatográficas de esos venenos, mostraron que la toxicidad de los mismos se debe a componentes de bajo peso molecular (de Roodt y col. 2001).

Obviamente debido a las características de los venenos de escorpiones, este método no es el de elección para su estudio, dado que la resolución de esta técnica no brinda mucha información sobre los componentes de bajo peso molecular, indicando sólo su presencia o ausencia, sin brindar ningún otro dato sobre los mismos. Esto es importante en el caso de los venenos escorpiónicos considerando que los mismos pueden poseer entre 50-70 péptidos neurotóxicos diferentes de 3-7 kDa (**Possani y col. 1999 a y b; 2000: Rodríguez De La Vega y Possani 2004**), lo que hace que esta técnica no sea la apropiada para el estudio de estos componentes.

No obstante, su uso para el trabajo rutinario con venenos es útil. Mediante esta técnica podemos así monitorear sencilla y económicamente el grado de purificación de los homogenatos de telson o de los venenos ordeñados, así como tener idea de la presencia de los componentes de baja masa molecular, entre los que se encuentran las neurotoxinas. En estos casos observamos la presencia de componentes de alta masa

molecular que nos pueden indicar contaminaciones en los homogenatos o en el veneno ordeñado así como la presencia de material por debajo de los 10 kDa, en concordancia con la masa molecular de las neurotoxinas (ver figuras 4.b.1).

Para la mejor identificación de los componentes de bajo peso molecular, como se mencionó, es recomendable el uso de solución de tampón con tris-tricina así como el uso de geles en gradiente o con alta concentración de acrilamida/bisacrilamida (15% o superior) cuando sea posible. Si bien por esta técnica en determinadas condiciones bien ajustadas se pueden llegar a identificar los grupos de componentes de bajo peso molecular, para el estudio de estos venenos y de esos componentes, es más conveniente utilizar otras técnicas como la cromatografía en fase reversa.

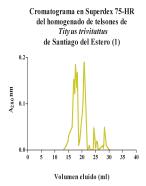
A pesar de no ser la metodología de elección como antes se mencionó, esta es de utilidad para estudios rutinarios o para evaluar la pureza del proceso de obtención de veneno de escorpiones tanto a partir de los homogenatos de telson como del veneno extraído por estimulación eléctrica.

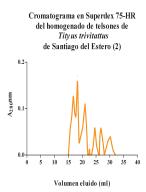
4.c ESTUDIOS CROMATOGRÁFICOS

4.c.1 Separación cromatográfica por filtración en gel.

4.c.1.1 Materiales y métodos

Muestras de 200 μl de sobrenadantes (alrededor de 500 μg de proteína) se sembraron en una columna preempacada de Superdex 75 HR (Pharmacia). La elusión se efectuó con buffer acetato de sodio 0.1 M en ClNa 0.15 M, pH 4.0, a una velocidad de flujo de 0.4 ml/min empleando un sistema FPLC (Pharmacia). Se determinó la absorbancia del eluido a 280 nm con un monitor UV-1 acoplado a un registrador REC-200 (Pharmacia). Las fracciones correspondientes a cada pico de absorbancia fueron combinadas y liofilizadas. Para su ensayo, fueron disueltas nuevamente en agua destilada, ajustadas a pH 7.0 e inoculadas a ratones por la vía intraperitoneal.


El veneno que se corrió provino de animales de Buenos Aires, Córdoba y Santiago del Estero. El patrón se graficó mediante la representación del volumen de elusión de las fracciones versus la A₂₈₀nm. El material de los picos separados, ajustando la cantidad de material inyectado, se inoculó a ratones por la vía intraperitoneal a fin de observar los efectos provocados por los mismos (de Roodt y cols. 2001).


4.c.1.2 Resultados

El diagrama de elusión en Superdex 75 HR de las muestras de Santiago del Estero se presenta en la **Figura 4.2.a** y el de las de la ciudad de Buenos Aires se presenta en la **Figura 4.2.b**. Los cromatogramas superpuestos de las tres corridas se muestran en la figura **4.2.c**. Los datos provenientes del homogenato de Córdoba presentaron un patrón similar a los aquí graficados para aquellos de otras procedencias.

Las muestras de Santiago del Estero mostraron tres picos mayores con volúmenes de elución relativos (Ve/Vo) de 1.32; 1.347 y 1.536 y 6-8 picos menores con volúmenes de elución mayores. En el material proveniente de Capital Federal también se observaron tres picos mayores con valores de Ve/Vo de 1.32, 1.325 y 1.51 y 6-7 picos menores.

Figura 4.c.1

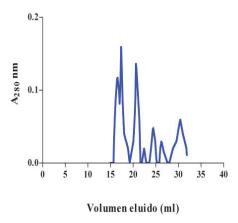


Figura 4.c.1. Cromatograma de una corrida en Superdex 75 HR en un sistema FPLC de 500 μg de homogenatos de telson de *T. trivittatus* de la provincia de Santiago del Estero. Si bien hay pequeñas diferencias en cuanto al tamaño de los picos, los volúmenes relativos en que eluyen es muy similar.

Figura 4.c.2

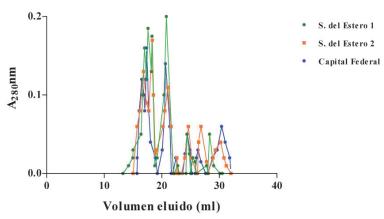

Cromatograma en Superdex 75-HR del homogenado de telsones de *Tity us trivitattus* de la Capital Federal

Figura 4.c.2. Cromatograma de una corrida en Superdex 75HR de 500 μg de homogenato de telson de *T. trivittatus* de la Capital Federal. Obsérvese la similitud en los volúmenes de elusión y el tamaño de los picos con las muestras provenientes de Santiago del Estero, en especial con la muestra 2.

Figura 4.c.3

Cromatograma en Superdex 75-HR de las tres muestras de homogenado de telsones de *Tityus trivittatus*

Figura 4.c.3. Superposición de los cromatogramas de la corrida de homogenatos de telson de *T. trivittatus* de la provincia de Santiago del Estero (dos muestras) y de la ciudad de Buenos Aires. Nótese que a pesar en las diferencias del tamaño de los picos, en general los volúmenes de elusión y los comienzos y finalización de las corridas son coincidentes.

La actividad letal de las diferentes fracciones sólo se observó inyectando un *pool* de fracciones con una elusión mayor a los 24 ml. Todas las fracciones de menor peso molecular (elusión más tardía) produjeron algo de signología en los ratones inoculados por la vía intraperitoneal.

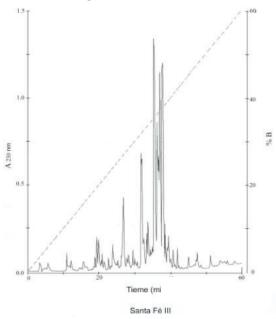
El elevado volumen de elusión relativo de las fracciones con actividad tóxica es congruente con lo observado en las electroforesis, que muestran componentes con peso molecular entre 6 y 10 kDa, en concordancia a la masa molecular conocida para algunas de la neurotoxinas de estos escorpiones. Estas características sugieren que podría tratarse de toxinas modularoras de canales de Na⁺, ya que estas poseen un peso molecular de alrededor de 7.0 kDa (**Possani y col., 1999a**), y se encuentran frecuentemente en venenos de escorpiones del Género *Tityus*, son responsables de la potencia letal de estos venenos (**Becerril y col., 1997; Kalapothakis** y **Chávez-Olórtegui, 1997**). Recientemente se determinó una beta-toxina en veneno de *T. trivittatus* cuya masa molecular está en el rango mencionado (**Coronas y col., 2007**).

4.d Cromatografía líquida de alta perfomance (HPLC) de homogenatos de télsones.

4.d.1 Materiales y Métodos

Se estudiaron muestras de homogenatos de telson de escorpiones provenientes de las provincias de Santiago del Estero (ciudad de Santiago del Estero), Santa Fe (ciudad de Santa Fe, homogenato y veneno ordeñado), Catamarca (Ciudad de Catamarca), Córdoba (Ciudad de Córdoba), La Rioja (ciudad de La Rioja), Entre Ríos (Paraná) y de la Ciudad de Buenos Aires (veneno ordeñado).

Se realizó la separación de componentes por cromatografía líquida de alta rendimiento (HPLC). Se corrieron 118 mg de veneno soluble de *T. trivittatus* (1.18 mg) en una columna de fase reversa C18 en un sistema HPLC (Waters). Las muestras fueron corridas durante 70 minutos usando un gradiente linear de solución A (0.12% de TFA en agua) a 60% de solución B (0.10% de TFA en acetonitrilo).


4.d.2 Resultados

Todos los patrones obtenidos mostraron diferencias importantes, lo cual es esperable en este tipo de venenos y sobre todo en este tipo de material (homogenatos). Esto no es sorprendente considerando que aun en el veneno producido por un mismo animal pueden observarse variaciones cromatográficas.

Sin embargo a pesar de los diferentes perfiles observados, en todos los casos se ven picos de componentes en tiempos de retención compatibles con aquellos descriptos para las neurotoxinas que actúan sobre los canales de sodio. **Ver figuras 4.d**.

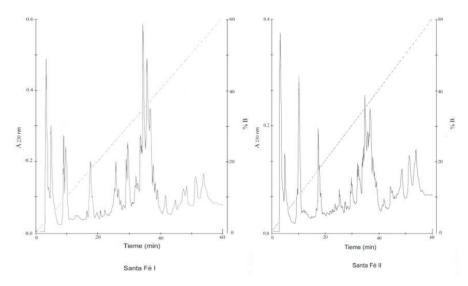
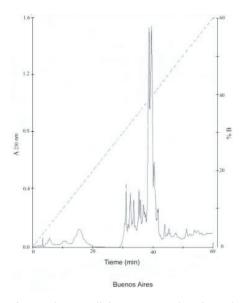
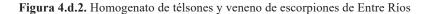

Figuras 4.d

Figura 4.d.1.a. Veneno ordeñado de escorpiones de Santa Fe


Figuras 4.d.1 a y b. Cromatografía en las condiciones antes descriptas del veneno ordeñado de *T. trivittatus* de Santa Fe. Nótese la menor cantidad de componentes observados respecto a dos diferentes *pooles* de homogenatos de telson de escorpiones provenientes de la misma ciudad que se muestran en las dos figuras inferiores (4.d.1.b). Sin embargo en todos los casos el tiempo de retención de los picos mayores, en concordancia con los que eluyen las neurotoxinas conocidas, es bastante similar.

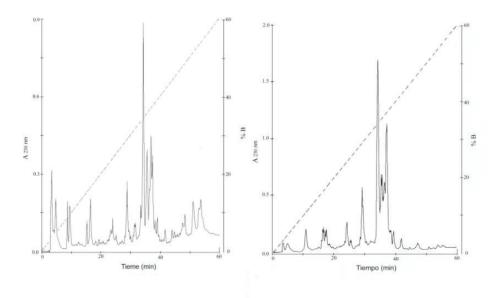
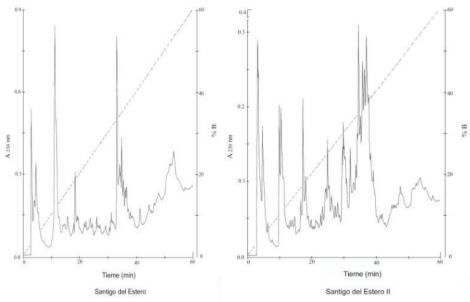
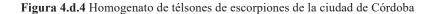
Figuras 4.d.1.b. Homogenato de télsones de escorpiones de Santa Fe.



Figuras 4.d.1.b. Homogenato de télsones de escorpiones de Santa Fe. En caso de los homogenatos los tiempos de retención de los picos en general son bastante parecidos, con las limitaciones del gran ruido que presentan los cromatogramas de los homogenatos.

Figuras 4.d.1.c. Cromatografía de veneno ordeñado de *T. trivittatus* de Buenos Aires.

Figuras 4.d.1.c. Cromatografía en las condiciones antes descripta de veneno ordeñado de cuatro ejemplares de *T. trivittatus* de la ciudad de Buenos Aires. Nótese la menor cantidad de componentes observados respecto a dos diferentes *pooles* de homogenatos de telson. También la presencia mayor de componentes en los tiempos de retención correspondientes a la mayoría de las neurotoxinas de estos escorpiones.

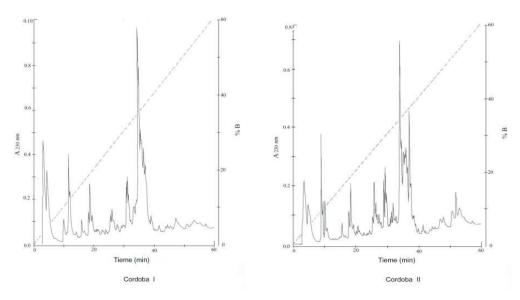
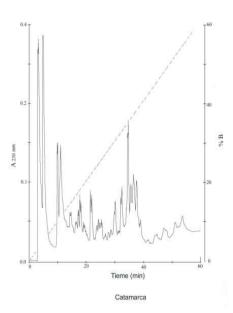

Figura 4.d.2. Nótese que el homogenato de télsones del veneno de Entre Ríos (izquierda) es proveniente de la ciudad de Paraná, vecina a la ciudad de Santa Fe, suponiéndose similares características en los escorpiones por similitud geográfica. A pesar de esto, los patrones al igual que lo observado con las diferentes muestras de Santa Fe, no son iguales. También en este caso, los tiempos de retención de los picos mayores y algunos de los menores poseen tiempos de retención similares a los de las muestras de Santa Fe. El veneno (derecha) ordeñado no muestra los picos iniciales in los que eluyen tras los 40 minutos que se observan en el material proveniente de homogenatos.

Figura 4.d.3. Homogenato de télsones de escorpiones de Santiago del Estero


Figura 4.d.3. Los homogenatos provinieron del mismo centro de la ciudad de Santiago del Estero y fueron recolectados de las mismas regiones, aún así obsérvese la diferencia en cuanto al patrón de ambos cromatogramas, si bien los tiempos de retención de los picos mayores son bastante similares en ambos casos.

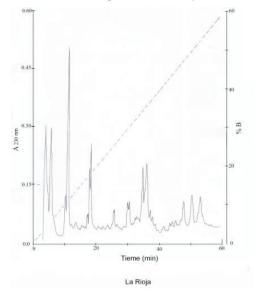
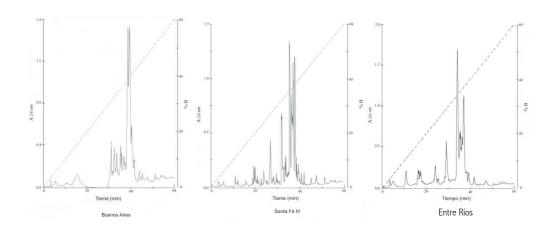

Figura 4.d.4. También en este caso las muestras provinieron de los mismos lugares. En este caso si bien los cromatogramas no son similares presentan mayor parecido entre si que los otros estudiados. En este caso también los tiempos de retención con de los picos mayores es similar y son coincidentes varios de los picos menores.

Figura 4.d.5. Homogenato de télsones de escorpiones de la ciudad Catamarca

Figura 4.d.5. El cromatograma de esta muestra es diferente a los anteriores. Si bien presenta también uno de los picos mayores con tiempos de retención de 25-38 minutos, en este caso la mayor cantidad de material eluyó al inicio de la corrida a diferencia de lo observado con los otros homogenatos estudiados.


Figura 4.d.6. Homogenato de télsones de escorpiones de La Rioja.

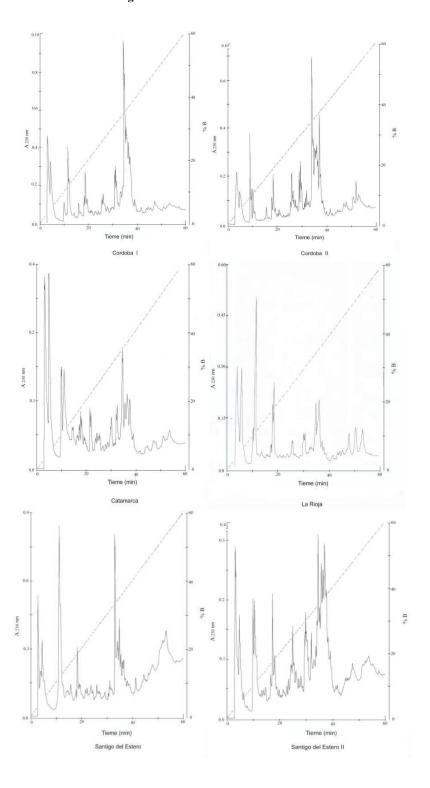
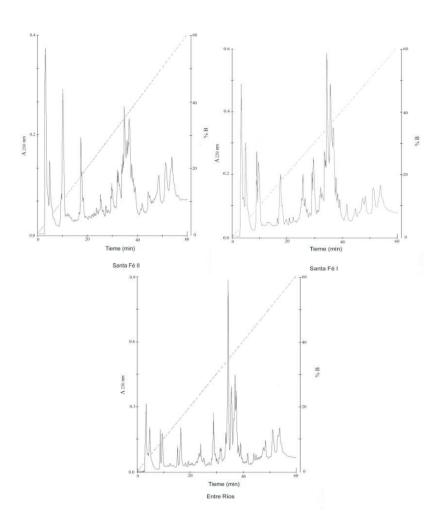

Figura 4.d.6 De manera similar a lo observado con los homogenatos de télsones de animales provenientes de Catamarca, si bien se observan los picos con tiempos de retención de 25-38 minutos, observados en todos, también la mayor cantidad de material eluyó al inicio de la corrida. Estas diferencias (Catamarca y La Rioja) podrían deberse a características regionales o al estado del material utilizado (por las altas temperaturas de la región y el tiempo hasta conservación), si bien por experiencias previas, esto último no afectaría tanto a las muestras.

Figura 4.d.7. Cromatogramas de homogenados de telson o venenos de T. trivittatus de la Argentina.


Venenos ordeñados

Homogenatos de télsones del Centro - Norte

Homogenato de télsones del Litoral

4.d.3 COMENTARIOS

En todos los casos se observaron patrones cromatográficos diferentes con numerosos picos de distintos tiempos de retención. Cuando se compara el veneno ordeñado con el homogenato es evidente el "ruido" producido por la elusión de numerosos componentes del estroma del telson, que dificultan la observación de los picos de menor tamaño. También estos picos podrían deberse a componentes del veneno o del estroma que pudieron haber sufrido hidrólisis parcial por fallas en el proceso de conservación o de toma de muestra.

Un dato interesante es que en las muestras de veneno ordeñado no se observan picos grandes en los tiempos menores de retención, lo que si se observa en el caso de los homogenatos, independientemente del lugar de dónde provengan (**Figura 4.d.7**). En todos los casos se pueden observar picos de alta absorbancia entre los 25 y 40 minutos de retención, lo que en este sistema es coincidente con el tiempo de retención de las toxinas de Na⁺ y de K⁺ de los venenos escorpiónicos, y los observados en los estudios realizados en este veneno (**Coronas y cols., 2003, 2007; Abdel-Mottaleb y cols., 2006; Possani L., comunicación personal**).

En muchos de los casos los homogenatos muestran picos altos al inicio de la corrida, lo que podría estar relacionado con material del estroma del telson, dado que no se observan en las muestras de veneno ordeñado. También podría tratarse de material degradado del estroma o del mismo veneno en casos en que su desecación no haya sido total o en que los télsones hayan sido obtenidos de animales cadavéricos. A pesar de esto, todos los homogenatos presentaron picos importantes en coincidencia con los tiempos de retención, entre los que aparecen en este sistema de separación las neurotoxinas de estos venenos.

Se encontraron diferencias en los perfiles de los homogenatos aún de la misma provincia o ciudad. Sin embargo, a pesar de las diferencias en los picos menores y en el ruido de cada corrida, hubo una coincidencia importante en los picos medianos y los picos grandes, lo que se observa claramente en los casos de las muestras de Santa Fe, Córdoba y algo menos en los de Santiago del Estero. Con la excepción de los picos mayores, ya mencionada, los cromatogramas presentan diferencias entre muestras provenientes de diferentes provincias que son más notorias que las observadas en muestras del mismo origen.

Si bien las variaciones regionales de venenos existen entre todos los animales venenosos, se ha visto con algunos venenos ofídicos que las variaciones individuales de venenos a veces son mayores que las de venenos provenientes de diferentes regiones o (Rocha y Furtado 2005). Por otro lado, se ha demostrado la variación entre venenos de escorpión provenientes de un mismo animal (D'Suze G., comunicación personal). Esto torna complicado poder interpretar, al menos bioquímicamente y con estas herramientas, las variaciones observadas en las diferentes muestras. Posiblemente el aislamiento de diferentes tipos de toxinas podría ayudar a conocer las variaciones regionales en cuanto al arsenal toxicológico de estos animales.

En este caso puntual es menester decir, que sin duda debe haber diferencias de importancia médica entre el veneno de *T. trivittatus* de diferentes regiones del país, lo que independientemente de todos los estudios bioquímicos o toxicológicos en ratones

que se puedan realizar, se puede verificar por la diferente gravedad de los envenenamientos en diferentes regiones del país. Como se ha mencionado en Buenos Aires, por ejemplo aunque hay picaduras por este escorpión, nunca ha habido un caso grave de envenenamiento, y si bien observamos que este veneno posee neurotoxinas y puede generar signología en ratones, sólo lo hace a dosis muy altas (se necesita más de un telson para matar un ratón de 20g).

Posiblemente en el caso de los escorpiones de esta especie que no presentan toxicidad clínica ni experimentalmente, exista mayor cantidad de toxinas activas contra artrópodos que para mamíferos, lo que no podemos discernir simplemente por estudios cromatográficos.

Las diferencias regionales en la toxicidad del veneno de escorpiones no es privativa de *T. trivittatus*. Por ejemplo un hecho curioso que se da en México es que algunos *Centruroides* de una misma especie en algunos estados producen ciertos signos clínicos que en otros no se observan, como por ejemplo el priapismo. La variabilidad que presentan estos venenos, especialmente en lo referente a sus neurotoxinas (**Becerril y col. 1997; Possani y col. 1999a y b, 2000**), y como en el ejemplo antes citado (componentes que pudiesen actuar sobre terminaciones nerviosas que regulen específicamente músculo liso o componentes que pudiesen actuar sobre el sistema kalicreína-bradiquinina), sin duda puede relacionarse con la variabilidad en signos y síntomas que se observan en los humanos picados por estos artrópodos.

Para definir las posibles variaciones entre las diferentes poblaciones de escorpiones de las distintas provincias de la Argentina, harían falta muestras representativas de las poblaciones regionales, y con condiciones metabólicas estandarizadas en los escorpiones de origen de las muestras. Hasta que esto pueda realizarse, sólo contamos con los resultados parciales prelimnares presentados en este estudio.

5. COMPONENTES AISLADOS DEL VENENO DE T. TRIVITTATUS

5.1 INTRODUCCIÓN

De las dificultades en obtención de veneno para estudios experimentales y de caracterización, ya explicado en capítulos anteriores, surge que independientemente de trabajos relacionados al proceso de producción (de Roodt y col. 1999; de Roodt y col., 2005; Laskowicz y col. 2005 a y b) o de trabajos epidemiológicos (Salomón y de Roodt, 2002; de Roodt y col., 2003), los estudios realizados sobre estos venenos no relacionados a la toxicidad en sí o al proceso productivo, o a su impacto en salud pública sea muy escasa (Coronas y col. 2003; Abdel-Mottaleb y col. 2006).

El primer aislamiento de toxinas de este escorpión fue el de una toxina bloqueadora de canales de potasio similar a la Butantoxin de T. serrulatus (en honor al Instituto Butantan de Sao Paulo), denominada Tt-But-toxin y que se publicó en coautoría con el Dr. Lourival Possani del Instituto de Biotecnología de la Universidad Autónoma de México en el 2003 (Coronas y cols., 2003). El otro aislamiento de componentes de este veneno también fue un trabajo en colaboración con el Dr. Lourival Possani y el Dr. Jan Tytgat de la Universidad de Lovaina, Bélgica en que se aisló un nuevo tipo de toxinas de canales de potasio de venenos de escorpiones, denominada Tt28 (Abdel-Mottaleb, 2006), a partir de este veneno. En ambos casos se trabajó con veneno obtenido de ejemplares de T. trivittatus de Santa Fe que fueron desinteresadamente brindados para la investigación por el Dr. Juan Carlos Beltramino y el Dr. Roberto Tomassone del Hospital de Niños de Santa Fe "Osvaldo Alassia", y por veneno permitido ordeñar in situ por el Dr. Carlos Trabbattoni de la Facultad de Ciencias Veterinarias de Esperanza, Santa Fe. Más recientemente, también en colaboración con el Dr. Lourival Possani, se clonó una toxina beta moduladora de canales de sodio, similar a la γ toxina de T. serrulatus, que se denominó Tt-gamma-like toxin (Coronas y col. 2007), siendo esta la primera toxina tóxica para mamíferos aislada de este veneno y la primera clonada de los *Tityus* de Argentina.

No obstante estos avances, la continua necesidad de veneno para la producción de antídoto nos impide poder destinar el mismo para estudios bioquímicos, que si bien requieren de poca cantidad de veneno, cuando hay poca disponibilidad, esa escasa cantidad es destinada exclusivamente a la producción de antiveneno.

Actualmente estamos tratando de mejorar el sistema de provisión y producción de este tipo de venenos, contando todavía con la desinteresadas colaboraciones entre las que destaco las del Hospital "O. Alassia" de Santa Fe (Dr. Juan Carlos Beltramino) del Ministerio de Salud de la Provincia de Entre Ríos (Médica Veterinaria Silvina Saavedra) del Méd. Veterinario Osvaldo López del Departamento de Zoonosis del Ministerio de Salud de la Provincia de Catamarca y los aportes del Dr. Eduardo Bazán (Ministerio de Salud) y la Dra. María del Carmen Díaz Ariza (Universidad Barceló) de la Provincia de La Rioja. Mediante los esfuerzos conjuntos y una vez asegurada la producción, se podrá aumentar el conocimiento de estos venenos, aislando y caracterizando nuevos componentes, sobre todo los de importancia médica como las neurotoxinas de canales de sodio, las cuales ya se han localizado y se procederá a su caracterización y estudio cuando se cuente con material suficiente.

Para finalizar esta introducción cabe mencionar que el los últimos años se han aislado toxinas de venenos de escorpión específicas para distintos tipos de canales iónicos las que, además de poder ser utilizadas como sondas en estudios neurofisiológicos, tienen potencial como herramientas terapéuticas de utilidad ante ciertas patologías que involucran a estas estructuras celulares.

En este capítulo entonces, se mencionarán los aislamientos y caracterizaciones de las dos toxinas de canales de potasio aisladas del veneno de *T trivittatus* y la de una gamma toxina (beta toxina) moduladora de canales de sodio, las única hasta la fecha de escritura de esta Tesis caracterizadas a partir del veneno de estos escorpiones.

5.2 AISLAMIENTO DE LA BUTANTOXIN (TTBUT-TOXIN, KTX 12.2) DE *T. TRIVITTATUS* (artículo original: Coronas y col., *Toxicon* 41 : 173–179, 2003).

Los venenos de escorpiones poseen péptidos básicos que reconocen canales de potasio de tejidos excitables y no excitables, y que fueron clasificados de acuerdo a su estructura dentro de varias subfamilias (**Tytgat y col. 1999, Possani y cols 1999 a y b**).

Las toxinas de canales de K^+ se han dividido en cuatro familias, las de las α , β , γ y κ -toxinas. Las α -KTx son las mejor estudiadas y se han descripto 13 subfamilias, las cuales se han aumentado posteriormente a 19.

El veneno de *T. serrulatus* posee una toxina similar a la Pi1 (de *Pandinus imperator*, escorpión africano de enormes dimensiones y utilizado como "mascota" u "ornamental"), la que contiene cuatro puentes disulfuro a diferencia de los tres que generalmente poseen las toxinas de canales de potasio (**Possani 1999b, 2000**). Este péptido fue la más larga de las α-KTx descriptas, con 41 residuos de aminoácidos. Se la llamó TsTX-IV y fue la primera de una nueva subfamilia de péptidos (**Tytgat y cols., 1999**). Recientemente se describió la estructura tridimensional de una isoforma de la TsTX-IV (**Holaday y col., 2000**), llamada butantoxin, la cual perdió la asparagina en el extremo C terminal en posición 41.

En el veneno de *T. trivittatus* de la Argentina se encontró esta toxina a la cual se le realizaron estudios electrofisiológicos y se determinó su estructura y el ordenamiento de los puentes disulfuro los cuales no habían sido determinados directamente en la butantoxin. Esta fue la primera purificación y determinación de la secuencia de aminoácidos, de puentes disulfuro y de los efectos bloqueadores sobre canales ShakerB de potasio. A esta toxina aislada se la llamó *T. trivittatus* Butantoxin (TtBut-toxin), con el número de clasificación KTx12.2 y es el primer péptido descripto para el veneno de esta especie de escorpión.

5.2.1 Materiales y Métodos

Veneno utilizado: el veneno provino de animales de la provincia de Santa Fe, el cual fue obtenido por estimulación eléctrica de los ejemplares, siendo el veneno,

centrifugado a 9000 g y el sobrenadante liofilizado y guardado a -20°C hasta su utilización.

Métodos cromatográficos: el veneno fue solubilizado, centrifugado y separado en una columna analítica C18 de fase reversa (Vydac, Histeria, CA, USA) usando un sistema de cromatografía líquida de alto rendimiento (HPLC, Waters 600E, equipado con un detector de fotodiodos 996) corriendo la muestra durante 60 minutos (ver leyenda de la Figura 5.2.1).

Los picos fueron separados y la purificación final del péptido en estudios se obtuvo mediante dos separaciones cromatográficas adicionales.

La primera re-cromatografía se realizó utilizando un gradiente lineal de solución A (0.12% de ácido trifluoroacético [TFA] en agua) hacia la solución B (acetonitrilo en TFA al 0.10%) desde un 10% hasta un 35% de B, durante 45 minutos. La segunda recromatografía se realizó con un gradiente de 0 a 60% de solución B, durante 90 minutos. Ver Figuras 5.2.2 y 5.2.3.

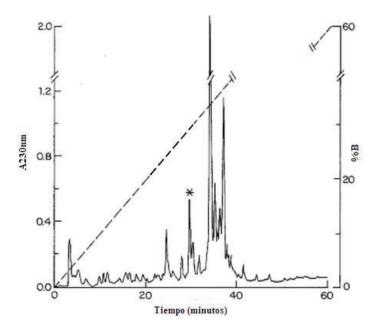
Determinación de la secuencia de aminoácidos: la determinación de la secuencia de aminoácidos de la toxina nativa y de una muestra de la toxina alquilada (derivados de propionamida de residuos de cisteína) fueron analizados por degradación automática de Edman en un secuenciador de proteínas Beckman LF3000 (Palo Alto, CA, USA). Los últimos residuos de la región C terminal fueron confirmados por espectrometría de masa.

Análisis por espectrometría de masas: las toxina en su forma homogénea y sus péptidos obtenidos por hidrólisis enzimática se reconstituyeron en acetonitrilo al 50% con 1% de ácido acético y se aplican directamente (5 ml) en un espectrómetro de masa (Finnigan LCO_{Duo}, San José CA), utilizando un sistema de inyección Surveyor MS. El eluído a 20 μl/min fue separado a fin de permitir entrar el 5% de la muestra a la fuente de nano-electrospray (1.0 μl/min). El voltaje del spray se ajustó a 1,6 kV y la temperatura capilar a 180°C. Para los análisis de espectrometría de masa la fuente de fragmentación fue operada con una energía de colisión de 25-35 volt, 35-45% (unidades

arbitrarias) de la energía de colisión normalizada, y el escaneado se realizó con la banda ancha activada. Todos los espectros fueron obtenidos en el modo ión-positivo.

Los datos obtenidos fueron analizados con el sitema Xcalibur Windows NT PC, y el análisis de espectro-fragmentación de iones MS/MS a partir de péptidos generados enzimáticamente fue realizado en el software Fuzzy ions, Sequest (Finnigan, San Jose, CA).

Determinación de puentes disulfuro: para esta determinación 40 μg de toxina nativa fue digerida con 5 mg de TPCK-tripsina en buffer de fosfatos de sodio 50 mM pH 6,0 durante 6 horas a 37°C. Después de la primera hidrólisis una alícuota de 3,0 mg de endopeptidasa Aspártico-N (Asp-N) se agregó a la mezcla de reacción y se dejó durante toda la noche a 37°C. Ambas enzimas fueron adquiridas a Boehringer (Manheim, Alemania). El producto final de las digestiones enzimáticas se separó en un HPLC utilizando una columna C18 de fase reversa (Vydac, Histeria, CA, USA) con un gradiente linear de de solución A (TFA 0.12%) a 60% de solución B (acetonitrilo en TFA 0.10%) durante 60 minutos. Los péptidos así obtenidos fueron directamente secuenciados por degradación de Edman usando el secuenciador Beckman LF 3000 y confirmados por espectrometría de masas como se describió más arriba.


Experimentos electrofisiológicos con canales de K⁺ Shaker B: la línea celular de insectos Sf9 se mantuvo en cultivo a 27°C en medio de Grace (Gibco BRL, MD, USA). Estas células fueron transfectadas por la infección con baculovirus recombinante conteniendo cDNA de canales Shaker B, y fueron utilizados para los experimentos dos días más tarde (Klaiber y col. 1990). Las corrientes macroscópicas fueron registradas en un Axopatch-1D (Axon Instruments, Inc.). Las corrientes fueron tomadas a 100 milisegundos por punto y filtradas en línea a 5 KHz. La conductancia fue restada con un protocolo P/-6. Los electrodos fueron hechos a partir de vidrio de borosilicato (KIMAX 51) para una resistencia de 1.5-2.0 MV. El 80% de la resistencia de serie fue compensada electrónicamente. La solución de control externa fue (mM): 145 NaCl, 10 CaCl₂, buffer 10 HEPES-Na⁺ pH 7.2. La solución de la pipeta interna fue (mM): 90 KF; 30 KCl, 10 EGTA, 10 HEPES-K buffer, pH 7.2. Las toxinas fueron disueltas en la solución externa después de lo cual fueron añadidas a la cámara de registro.

5.2.2 Resultados y Discusión

5.2.1. Purificación y estructura primaria.

En el fraccionamiento del veneno crudo de *T. trivittatus* mediante HPLC se pueden observar al menos 50 componentes diferentes, de forma similar a lo observado con otros venenos de *Tityus*, como *T. stigmurus* (**Becerril y col. 1996**) y *T. cambridgei* (**Batista y col. 2000**) pero con un perfil diferente, mayormente debido a la distinta concentración de componentes. El componente que eluyó alrededor de los 30 minutos (**Figura 5.2.1**) cuando se sometió a la determinación de aminoácidos dio dos secuencias principales, siendo una de ellas similar a la TsTXIV (**Novello y col. 1999**) y a la butantoxin (**Holaday y col. 2000**).

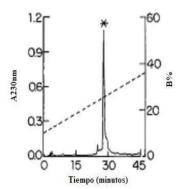

Figura 5.2.1. Separación cromatográfica (HPLC) del veneno de *T. trivittatus* de la provincia de Santa Fe.

Figura 5.2.1. Se colocaron 1,18 mg de veneno soluble de *T. trivittatus* a una columna C18 en un sistema HPLC. Se corrió durante 70 minutos usando un gradiente linear de solución A (0,12% de TFA en agua) a 60% de solución B (0,10% de TFA en acetonitrilo). El componente marcado con asterisco corresponde a la TtBut-toxin.

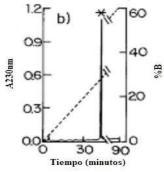

Se realizaron los dos pasos cromatográficos adicionales utilizando las condiciones descriptas en métodos (**Figuras 5.2.2 y 5.2.3**). La pureza de los componentes fue verificada por secuencia de aminoácidos (sólo un residuo de aminoácido por ciclo) y por espectrometría de masas con una masa molecular experimental de [M + H⁺] 4507,0.

Figura 5.2.2. Primera re-cromatografía

Figura 5.2.2. Primera re-cromatografía del pico correspondiente a la TtButTX. Se realizó en las condiciones descriptas utilizando un gradiente de 10 a 35% de B en 45 minutos. El asterisco indica el pico correspondiente a la toxina.

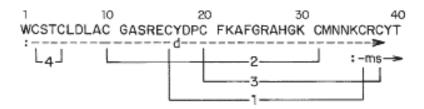
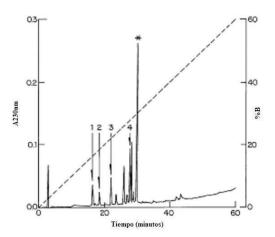

Figura 5.2.3. Segunda re-cromatografía

Figura 5.2.3. Segunda re-cromatografía. Se muestra la segunda re-cromatografía, usando un gradiente de 0 a 60% de B durante 90 minutos. El asterisco indica el pico correspondiente a la toxina.

El péptido así purificado y su derivado con cisteínas alquiladas (propionamidacisteínas) fueron secuenciados por degradación automática de Edman y la secuencia de los primeros 38 aminoácidos fue inequívocamente determinada, como se muestra en la **Figura 5.2.4**, en la que se indica subrayada como (- d -). En la región C terminal los residuos 35 – 40 fueron determinados por el análisis espectrometría de masas, como se indica en la misma figura marcado como (- ms -).

Figura 5.2.4. Secuencia primaria de aminoácidos de la TtButTX

Figura 5.2.4. Secuencia primaria de aminoácidos de la TtButTX. Secuencia total de aminoácidos e indicación de los puentes disulfuro de la TtBut-toxin. La secuencia directa (subrayada con d-) de una muestra alquilada mostró una inequívoca identificación de los primeros 38 residuos y del último segmento C-terminal desde las posiciones 35 a 40, las que fueron determinadas por espectrometría de masa (subrayado –ms-). Los resultados de la determinación de los puentes disulfuro son indicados en las figuras siguientes en dónde los número 1-4 son apropiadamente definidos.


La masa molecular teórica estimada para este péptido de 40 aminoácidos fue de 4506,18, valor muy cercano a aquel determinado experimentalmente (menos de una unidad de masas de diferencia). Así, la TtBut-toxin posee 40 residuos de aminoácidos, con ocho cisteínas formando cuatro puentes disulfuro, de forma similar a otras toxinas purificadas con anterioridad (Olamendi-Portugal y col., 1996, 1988; Kharrat y col., 1996; Lebrun y col., 1997; Novello y col., 1999). Sin embargo los puentes disulfuro tienen distinto apareamiento. La TtBut-toxin corresponde a alrededor del 1% del veneno soluble total.

5.2.2 Determinación de puentes disulfuro

Todas las toxinas de escorpiones que bloquean canales de K⁺ que contienen seis cisteínas poseen el ordenamiento de los tres puentes disulfuro en posición equivalente (**Possani y col. 1999b**). Sin embargo, aquellos que contienen cuatro puentes disulfuro parecen seguir diferentes patrones, como las Pi1 y Pi4 de *Pandinus imperator* de Gabón, África central (**Olamendi-Portugal y col. 1996, 1998**) o la maurotoxina de *Scorpio maurus palmatus* del norte de África (**Kharrat y col. 1997**). Por ese motivo es interesante conocer si los cuatro puentes disulfuro contenidos en esta toxina de *T. trivittatus* de Argentina siguen alguna de las combinaciones de puentes disulfuro conocidas.

Por esta razón se realizó la hidrólisis enzimática con dos enzimas en condiciones ligeramente ácidas (pH 6,0) para preservar los puentes disulfuro nativos. Utilizando este protocolo fue posible separar cuatro péptidos (**Figura 5.2.5**), que cuando fueron analizados por degradación automática de Edman y espectrometría de masa dieron una identificación de los cuatro puentes disulfuro (**Tabla 5.1**).

Figura 5.2.5. Péptidos obtenidos por hidrólisis de la Tt-Butan-toxin

Figura 5.2.5. Separación de la Tt-Butant-toxin digerida enzimáticamente. Toxina pura $(40 \ \mu g)$ fue digerida por dos enzimas digeridas en condiciones ligeramente ácidas y aplicadas en una C18 de la forma antes descripta. Los péptidos se separaron utilizando un gradiente de 0 a 60 de B en 60%. Los péptidos eluyeron en los tiempos de retención indicados con los números 1 a 4 y fueron los utilizados para la determinación de secuencias. El péptido sin digerir se indica con un asterisco.

Tabla 5.1. Secuencia de aminoácidos de los péptidos utilizados para la determinación de los puentes disulfuro.

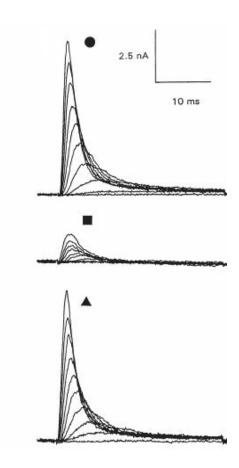
	Péptido (Tiempo)	Secuencia determinada	Pares de puentes disulfuro	Masa molecular teórica	Masa molecular experimental
1	(16.69)	ECY CR	C16-C36	688.7	688.3
2	(18.84)	DLACGAS (R) CMN (NK)	C10-C31	1398.6	1397.5
3	(22.41)	DPCF(K) CY(T)	C20-C38	992.1	991.3
4	(28.19)	WCSTCL	C2-C5	709.8	709.1

Tabla 5.1. Secuencia de aminoácidos de los péptidos utilizados para la determinación de los puentes disulfuro. Los péptidos purificados (los numerados de 1 a 4, ver figura) fueron directamente secuenciados dando doble secuencia de aminoácidos en cada ciclo (secuencia hallada) la cual corresponde a las posiciones indicadas en la tercer columna, basados en el conocimiento de la estructura primaria. Las secuencias fueron confirmadas por espectrometría de masas. Los residuos entre paréntesis fueron estimados en base a los datos de la cuarta y quinta columnas. Las masas moleculares teóricas de cada péptido son prácticamente idénticas a la masa experimental determinada, confirmando los puentes disulfuro.

Como puede ser observado en la Tabla precedente, los puentes disulfuro están formados entre Cys2-Cys5, Cys10-Cys31, Cys16-Cys36 y Cys20-Cys38. De estos puentes disulfuro los últimos tres son altamente conservados, correspondiendo exactamente a las posiciones equivalentes de todas las toxinas que contienen tres puentes disulfuro.

Las toxinas Pi1 (**Olamendi-Portugal y col. 1996**), Pi4 (**Olamendi-Portugal y col. 1998**), y Pi7 (**Delpierre y col, 1999**) de *Pandinus imperator*, como así de las toxinas HsTx1 de *Heteromerus spinnifer* (**Lebrum y col. 1997**) todas contienen cuatro puentes disulfuro y poseen los principales tres puentes disulfuro en las mismas posiciones equivalentes. Sin embargo, la maurotoxina de *Scorpio maurus palmatus* aparentemente posee diferente arreglo entre estos tres puentes disulfuro conservados, lo que la constituye en única. En este punto sin embargo se debe considerar que el arreglo de los puentes disulfuro de esta toxina se determinó con un péptido sintético. La presencia de ciertos residuos en su estructura primaria parecen favorecer la estructura

putativa sugerida en la literatura para la misma (Fajloun y col. 2000) al menos cuando se usan péptidos sintéticos.


En conclusión la distribución de los puentes disulfuro en la Tt-But-toxin resultó ser la misma que en la butantoxin, basados en datos de resonancia magnética nuclear y datos publicados (**Holaday y col. 2000**). Los tres puentes disulfuro más conservados están en posiciones equivalentes a aquellos de las toxinas Pi1, Pi4, Pi7 y HsTx1, aunque para el caso de la TtBut-toxin, el cuarto puente disulfuro (el extra en la región N terminal más extrema del péptido), está plegado en diferente posición (Cys2- Cys5). Sin embargo al compararlo con la maurotoxina, hay dos puentes disulfuro diferentes, confirmando la particular estructura de la maurotoxina.

5.2.3 Estudios fisiológicos en canales de K⁺ Shaker B

Debido a la similitud de las secuencias primarias de la TtBut-toxin (α -K⁺ Tx 12.2) con aquella de la TsTX-IV y butantoxin de *T. serrulatus*, conocidas por afectar los canales de K⁺ se estudió el efecto de la TtBut-toxin sobre canales de K⁺ expresados en células de insecto Sf9, de acuerdo a lo descripto previamente en materiales y métodos.

En la **figura 5.3.1** se muestra la acción de la TtBut-toxin sobre la conductividad mediada por los canales Shaker B, causadas por pulsos de - 30 ms desde -30 hasta +60 mV, en aplicaciones de 10 mV aplicados cada 20 s desde un potencial sostenido de 280 mV (parte superior de la figura **5.3.1**). La adición de 2,2 mM de TtBut-toxin a la solución externa produjo un 83% de inhibición de la corriente sin cambios apreciables en la cinética (parte media de la figura **5.3.1**). La inhibición de la toxina es reversible tras la perfusión de la célula con la solución externa, retornando al célula a la conductividad inicial (parte inferior de la **figura 5.3.1**).

Figura 5.3.1

Figura 5.3.1. Efectos bloqueadores de la TtButan-toxin sobre canales de K⁺ Shaker B. Corrientes de K+ a través de los canales Shaker B registrados bajo el patch-clamp de célula entera antes del agregado de toxina (●), durante el agregado de 2,2 mM de la toxina (■) y tras su remoción (por lavado (▲) de la superficie extracelular de la membrana.

Estos efectos se muestran mejor en la **figura 5.3.2** que representa la acción sobre los canales con el agregado de la toxina o previamente a su agregado o tras su lavado.

La inhibición de la TtBut-toxina sobre estos canales es independiente del voltaje de activación en el rango de 0-60 mV (**Figura 5.3.3**).

Figura 5.3.2 Corriente versus voltaje

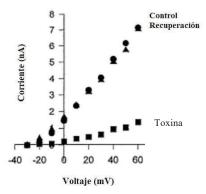
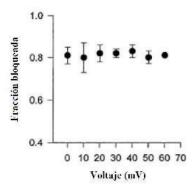



Figura 5.3.2. Corriente versus voltaje en presencia o auso con los de la figura 5.3.1. Durante el agregado de la toxin toxina (■) y tras su remoción por lavado (▲) de la superfície

xina. Estos datos se correlacionan nte el agregado de 2.2 mM de la ar de la membrana.

Figura 5.3.3. Fracción de canales de K⁺ bloqueados durante los pulsos de activación.

Figura 5.3.3. Fracción de canales bloqueados durante los pulsos de activación. El bloqueo no es voltaje dependiente entre los 0 y 60 mV. Los puntos son la media y las barras indican SEM de tres experimentos independientes.

Las características generales de inhibición de canales Shaker son similares a los producidos por todas aquellas toxinas par los canales de K⁺ que bloquean el canal por la entrada externa del poro siguiendo una cinética de saturación de Michaelis-Menten. Así, asumiendo razonablemente que el bloqueo producido por la TtBut-toxina sobre los canales de K⁺ Shaker sigue una curva dosis respuesta tipo Micaeliana de la curva pueden calcularse un Kd de 660 nM para su efecto bloqueador.

5.2.4 Clasificación de la nueva butantoxina de T. trivittatus y comentarios finales

Basados en el criterio publicado por Tytgat y col. (1999), en donde se propuso una nomenclatura general para las toxinas de escorpiones, específica para los canales de K⁺ la toxina aquí identificada es claramente otro miembro de la subfamilia 12 y se le dio el nombre de α-KTx 12.2. Esta toxina posee la misma secuencia de aminoácidos que la butantoxin (Holaday y col. 2000).

En la **Tabla 5.2** se muestra la clasificación general de estos péptidos. La subfamilia 13-15 fueron tomadas de Batista y col. (2000), Pisciotta y col. (2000) y Goudet y col (2002). La TtBut-toxin es uno de los péptidos más largos de estas 15 subfamilias.

Tabla 5.2. Clasificación general de las toxinas de canales de K⁺ de venenos escorpiónicos.

	Subfamilia a α de K+ (αΚ	Secuencia de aminoácidos (+Tx)	Referencia
1.1	ChTx	ZFTNVSCTTSKECWSVCQRLHNTS-RGKCMNK-KCRCYS	
2.1	NTX	TIINVKCTSPKQCSKPCKELYGSSAGAKCMNG-KCKCYNN	[1] [1]
3.1	KTX	GVEINVKCSGSPQCLKPCKDA-GMR-FGKCMNR-KCHCTPK	[1]
4.1	TsII-9	VFINAKCRGSPECLPKCKEAIG-KAAGKCMNG-KCKCYP	[1]
5.1	SCYTX	AFC-NLRMCQLSCRSL-GLLGKCIGD-KCECVKH	iii
6.1	Piî	L-VKCRGTSDCGRPCQQQTGCPNS-KCINR-MCKCYGC	[1]
7.1	Pi2	TISCTNPKQCYPHCKKETGYPNA-KCMNR-KCKCFGR	[1]
8.1	P01	VSCEDCPEHCSTQKAQAKCDND-KCVCEPI	[1]
9.1	BmP02	VGCEECPMHCKGKNAKPTCD-DGVCNCNV	[1]
10.1	CoTx1	AVC-VYRTCDKDCKRR-GYR-SGKCINN-ACKCYPY	[1]
11.1	PBTx1	DEEPKESC-SDEMCVIYCKGE-EYS-TGVCDGPQKCKCSD	[1]
12.1	TsTXIV	WCSTCLDLACGASRECYDPCFKAFG-RAHGKCMNN-KCRCYTN	[1]
12.2	TtBut	WCSTCLDLACGASRECYDPCFKAFG-RAHGKCMNN-KCRCYT	
13.1	Tc1	ACG-SCRKKCKGSGKCIN-GRCKCY	[2]
14.1	Bmkk1	TPFAIKCATDADCSRKCPGNPSCRN-GFCACT	[3]
15.1	Aa1	ZNETNKKCQGGS-CASVCRRVIGVAA-GKCIN-GRCVCYP	[4]

Tabla 5.2. Clasificación general de las toxinas de canales de K⁺ de venenos escorpiónicos. Se tomó sólo un ejemplo representativo de cada una de las subfamilias 1-12 (para las abreviaturas ver las referencias). La Subfamilia 1 es de Tytgat y cols. (1999), la 2 es la toxina Tc1 de *Tityus cambridgei* (Batista y cols. 2000); la (Goudet y cols. 2002); la 3 es la toxina Bmkk1 de *Buthus martensi* y la 4 es la toxina Aa1 de *Androctonus australis* (Pisciotta y cols. 2000). En la sub-familia 12 se ha agregado la nueva secuencia de la TtBut-toxin, indicada con (■) la cual es idéntica a la butantoxina (Holaday y cols. 2000).

5.2.5 Comentarios

La afinidad de esta toxina por los canales Shaker B es relativamente baja (660 nM) cuando se compara con la de otros miembros como la charibdotoxina de *Leiurus quinquestriatus hebraeus* para los canales de K⁺ Ca²⁺ dependientes del músculo esquelético con una Kd de 2.1 nM (**Jiménez-Gallego y col. 1988; Miller 1995**) o con la Pi2 de *Pandinus imperator* para los canales de K⁺ Kv1.3 de los linfocitos humanos con una Kd de 50 pM (**Péter y cols. 1998**).

Sin embargo se generan algunas preguntas interesantes respecto a la presencia de toxinas idénticas (estructura primaria y plegado idénticos) a los péptidos hallados en el género *Tityus*: *T. serrulatus*, *T. bahiensis*, *T. stigmurus* y ahora *T. trivittatus*. ¿Por qué estos péptidos están tan conservados en tantas especies de escorpiones? ¿Son los tipos de canales de K⁺ utilizados para los estudios (Shaker B, maxiK y Kv1.3) el blanco real hacia cual estos péptidos fueron "diseñados" para dirigirse y evolucionaron y se mantuvieron en la evolución?

La presencia altamente conservada de la butantoxina en varias especies de escorpiones sugeriría que esta juega una función importante en el veneno de los escorpiones. La afinidad de estos péptidos parece variar substancialmente desde lo nanomolar (**Novello y cols. 1999**) hasta casi la afinidad micromolar, dependiendo del tipo de canal de K⁺ con que se ensaye.

Se necesitarán más ensayos biológicos y electrofisiológicos sobre la actividad de estas toxinas sobre diferentes tipos de canales para encontrar respuestas generales y redefinir estas preguntas.

5.3 AISLAMIENTO Y CARACTERIZACIÓN DE UNA NUEVA TOXINA DEL VENENO DE T. TRIVITTATUS (TT28, A-K⁺ TX 20.1) PRIMER MIEMBRO DE UNA NUEVA SUBFAMILIA DE A -K⁺ TX (Trabajo original: Abdel-Mottaleb y cols., FEBS Letters 580 592-596, 2006).

En este trabajo se describe el aislamiento y caracterización de un péptido neurotóxico que es el primero de una nueva subfamilia de toxinas que bloquean canales de K⁺ de la familia α. Esta toxina fue clasificada como α-KTx20.1 y se la nombró Tt28, nombre adoptado de su género y especie (Tt) y el tiempo en minutos en que la misma eluye de un sistema de HPLC en las condiciones experimentales utilizadas. Este es un péptido corto (29 aminoácidos) que posee seis cisteínas que afecta preferencialmente los canales de K⁺ activados por voltaje Kv1.3 a concentraciones nanomolares.

5.3.1 Materiales y Métodos

Veneno: el veneno fue obtenido de la manera antes descripta y provino de ejemplares de *T. trivittatus* de la provincia de Santa Fe (**ver 5.2**).

Métodos cromatográficos: los procedimientos de purificación por cromatografía líquida de alto rendimiento (HPLC), fueron similares y con los mismos equipos a los descriptos para el aislamiento de la TtButan-toxin (**ver 5.2**). Sin embargo se agregaron dos puntos adicionales de purificación.

El veneno fue solubilizado, centrifugado y separado en una columna analítica C18 de fase reversa usando un sistema de cromatografía líquida de alto rendimiento corriendo la muestra durante 60 minutos (ver 5.2).

Posteriormente el procedimiento consistió en la separación de los componentes mayores que eluyen a los 28 minutos mediante un gradiente linear de solución A (agua en 0,12% de TFA) a solución B (acetonitrilo en 0.10 % de TFA) usando una columna analítica C18 para fase reversa (Vydac, Histeria, CA, USA) durante 60 minutos.

La purificación final se obtuvo usando el mismo sistema pero con un 5% de solución A hasta 60% de solución B durante 90 minutos.

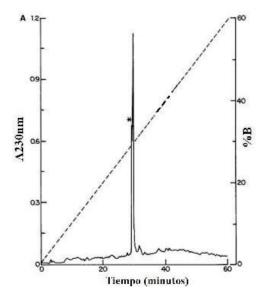
Para la separación inicial se usaron 1,18 mg de veneno soluble, para el primer paso cromatográfico 100 μg de proteínas y para el último paso 20 μg de muestra.

Determinación de la secuencia de aminoácidos: la determinación de la secuencia de la toxina nativa y de la toxina alquilada, se realizó de la manera descripta por degradación automática de Edman para la Tt-Butan-toxina en un secuenciador Beckman LF 3000 (Palo Alto, CA, USA). Los últimos tres residuos en el extremo C terminal se obtuvieron mediante el análisis de espectrometría de masas de la misma manera y con los mismos equipos descriptos para el aislamiento de la Tt-Butan-toxin..

Experimentos electrofisiológicos: la expresión de cRNA para canales Kv1.1-1.5 en ovocitos de rana así como de gen de canal humano relacionado ether-a-go-go (hERG) fueron preparados según métodos previamente descriptos (Huys y col. 2004; Stuhmer y col. 1988). Ovocitos de 5º estadio de *Xenopus laevis* fueron recogidos por ovariectomía parcial bajo anestesia (con éter). Los ovocitos fueron defoliculados incubándolos con colagenasa (Sigma) a 2 mg/ml en una solución ND-96 libre de Ca²⁺. Entre 1 – 24 horas después de la defoliculación, los ovocitos fueron inyectados con 50 nl de cRNA. Los ovocitos fueron entonces incubados en solución ND-96 (en nM: NaCl 96, KCl 2, CaCl₂ 1.8; MgCl₂ 2 y HEPES 5, pH 7.4), suplementado con 50 mg/ml de sulfato de gentamicina (Sigma) a 16°C.

Mediciones electrofisiológicas: los registros fueron realizados a temperatura de laboratorio utilizando un amplificador Gene-Clamp 500 (Molecular Devices). Las corrientes de los ovocitos fueron registradas 1-5 días después de la inyección. Los electrodos de voltaje y de corriente fueron llenados con KCl 3 M. Las resistencias de ambos electrodos fueron mantenidas bajas (<0.5 MX). Las corrientes fueron muestreadas a 500 Hz, 250 Hz y 1 kHz y filtradas usando un filtro de bajo pasaje de cuatro polos a 200, 100 y 500 Hz para los canales Kv1.1 – Kv1.5, hERG y Shaker IR respectivamente.

Análisis de la secuencia y comparación: la secuencia de la Tt28 fue analizada por los buscadores BLAST (Altschul y cols. 1997) y FASTA (Pearson y Lipman, 1988). Ambas recuperaron sólo péptidos del tipo α-KTx aunque con baja similitud. Para


desarrollar un análisis más profundo se utilizaron todos los datos disponibles en la literatura de α -KTx_s para generar un alineamiento multisecuencial (MSA: multiple sequence alignment) con Clustal W (Chenna y col. 2003).

5.3.2 Resultados

5.3.2.1 Purificación y determinación de la estructura primaria

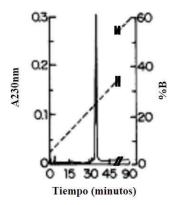

Como se describió anteriormente, la cromatografía por HPLC del veneno crudo de *T. trivittatus* permite la separación de al menos 50 componentes diferentes. El pico marcado con un asterisco en la figura 5.3.1 no es puro sino que contiene dos péptidos, el pico mayor corresponde a la butantoxin. El componente secundario que eluye tempranamente marcado con un asterisco en la figura debió ser re-cromatografiado para obtener un componente homogéneo, y el patrón de esta re-purificación se muestra en la **Figura 5.3.2.**

Figura 5.3.1. Purificación de la Tt28 del veneno de T. trivittatus.

Figura 5.3.1. Purificación de la Tt28 del veneno de *T. trivittatus*. Se corrieron 1,18 mg de veneno soluble de *T. trivittatus* en una columna C18 en un HPLC, como se ha indicado previamente, observándose un pico mayor. Este pico se volvió a cromatografiar de la manera descripta y se observó un pico que eluyó a los 28 minutos pero compuesto por dos componentes.

Figura 5.3.2. Re-purificación del componente mayor.

Figura 5.3.2. Re-purificación del componente mayor. El componente mayor que eluyó a los 28 minutos fue re-purificado por un gradiente lineal de solución A (agua en TFA 0,12%) a solución B (acetonitrilo en TFA al 0,10%) durante 60 minutos.

En la segunda re-cromatografía se obtuvo un pico simétrico y que al análisis resultó homogéneo, dando sólo un residuo de aminoácido por ciclo del secuenciador, y un sólo componente por espectrometría de masas, con una masa molecular experimental de [M + H⁺] 3310-3 a.m.u. (atomic mass units). El recupero final de los péptidos puros mostró que corresponde al 1,7% del contenido proteico del veneno soluble.

El péptido purificado y una muestra reducida y alquilada fue secuenciada y la secuencia de los 26 residuos de aminoácidos fueron determinados como se indica en la **Figura 5.3.3** (subrayados e indicados como "directo"). Los tres aminoácidos situados en el extremo C terminal (PGR) fueron secuenciados por fragmentación de espectrometría de masas (MS/MS) y se indican en la figura subrayados como "ms". La masa molecular teórica para estos 29 aminoácidos fue de 3309.9 en estrecha proximidad con los valores determinados experimentalmente (menos de una unidad de masa de diferencia), confirmando la secuencia completa.

Figura 5.3.3. Secuencia de aminoácidos de la Tt28

Figura 5.3.3. Secuencia de aminoácidos de la Tt28. Se muestra la secuencia directa obtenida por degradación de Edman (subrayado e indicado como "directo") y los residuos identificados por fragmentación de espectrometría de masas (MS/MS) y está indicado como "ms".

5.3.2.2. Análisis comparativo de la secuencia

La secuencia de la Tt28 fue alineada frente a todas las α-KTxs conocidas (más de 120 hasta la fecha de escritura del trabajo incluido en esta tesis). La identificación fue inferior al 40% frente a cualquiera de las toxinas con que fue considerada.

En base a los criterios publicados por Tytgat y cols. (1999), la Tt28 fue clasificada dentro de una nueva subfamilia como α -KTx 20.1. Las uniones disulfuro definitivas de la Tt28 todavía deben ser determinados pero es razonable asumir que el péptido adopta el conocido plegamiento α/β estabilizado por cisteínas y por lo tanto contiene los típicos pares disulfuro de las otras subfamilias de α -KTxs. Ver **Tabla 5.3.1.**

Tabla 5.3.1. Secuencia de alineamiento de la Tt28 con otras α -KTx.

α-KTx	Nombre	Secuencia de Aminoácidos	%
1.1	ChTx	ZFTNVSCTTSKECWSVCQRLHNTSRG-KCMN-KKCRCYS	10
2.1	NTx	TIINVKCTSPKQCSKPCKELYGSSAGAKCMN-GKCKCYNN	27
3.1	KTx	GVEINVKCSGSPQCLKPCKDA-GMRFG-KCMN-RKCHCTPK	17
4.1	TsTXK	VFINAKCRGSPECLPKCKEAIGKAAG-KCMN-GKCKCYP	10
5.1	ScyTx	AFCNL-RMCQLSCRS-LGLL-G-KCIG-DKCECVKH	20
6.1	Pil	LVKCRGTSDCGRPCQQQTGCPNS-KCIN-RMCKCYGC	24
7.1	Pi2	TISCTNPKQCYPHCKKETGYPNA-KCMN-RKCKCFGR	31
8.1	PO1	VSCEDCPEHCSTQKAQAKCDN-DKCVCEPI	17
9.1	BmpO2	VGCEECPMHCKGKNAKPTCDD-GVCNCN-V	25
10.1	CoTx1	AVCVY-RTCDKDCKR-RGYRSG-KCIN-NACKCYPYGK	17
11.1	PBTx1	DEEPKESCSD-EMCVIYCKG-EEYSTG-VCDGPQKCKCSD	27
12.1	BuTx	WCSTCLDLACGASRECYDPCFKAFGRAHG-KCMN-NKCRCYTN	13
13.1	Tcl	ACGSCRKKCKGSG-KCIN-GRCKCY	21
14.1	BmKK1	TPFAIKCATDADCSRKCPGNPSCRN-GFCACT	13
15.1	Aa1	ZNETNKKCQG-GSCASVCRRVIGVAAG-KCIN-GRCVCYP	10
16.1	TamuloTx	DLIDVKCISSQECWIACKKVTGRFEG-KCQN-RQCRCY	6
17.1	TXKs4	QTQCQSVRDCQQYCLTPD-RCSY-GTCYCKTT	17
18.1	Tc32	TGPQTTCQA-AMCEAGCKG-LGKSME-SCQG-DTCKCKA	13
19.1	BmBKT	AACYS-SDCRVKCVA-MGFSSG-KCIN-SKCKCYK	20
20.1	Tt28	GCTP-EYCSMWCKVKVSON-YCVKNCKCPGR	100

Tabla 5.3.1. Secuencia de alineamiento de la Tt28 con otras α-KTx. La secuencia de aminoácidos de la Tt28 (indicada en negrita) se comparó con ejemplos representativos tomados de cada una de las subfamilias 1-19 (**Rodríguez de la Vega y Possani, 2004**). %: identidad proporcional porcentual del péptido mencionado comparado con Tt28.

5.3.2.3 Estudios electrofisiológicos

Los efectos biológicos de la Tt28 fueron investigados en ovocitos de *Xenopus laevis* expresando un simple tipo de canal de K⁺ activado por voltaje. La Tt28 redujo las

corrientes de K⁺ a través de los Kv1.3 y Kv1.2 en un 82% y un 73% respectivamente, pero no inhibió a los canales Kv1.1, Kv1.4 Kv1.5, Shaker IR o hERG. **Figura 5.3.4.**

Los valores de EC_{50} fueron 102 ± 7.6 nM para Kv1.2 y fue 12 veces menor para los Kv1.3 (7.9 \pm 1.4 nM), colocando a la Tt28 en el mismo rango de potencia de la ChTx de *Leiurus quinquestriatus hebreus* y Pi de *Pandinus imperator*.

Figura 5.3.4

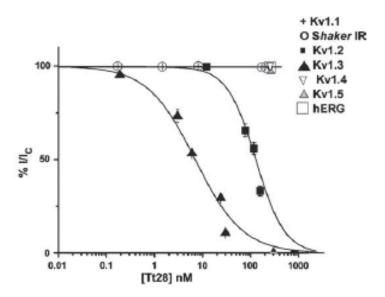


Figura 5.3.4. Inhibición de diferentes tipos de canales de K+ por el agregado de Tt28. (+) Kv1.1, (\blacksquare) Kv1.2, Kv1.3 (\blacktriangle), Kv1.4 (\bigtriangledown), Kv1.5 (\bigtriangleup), Shaker IR (\circ) y hERG (\Box). Los valores de EC50 fueron 102 \pm 7.6 nM para KV1.2 y 7.9 nM para Kv1.3. Las curvas dosis-respuesta se muestran como el porcentaje de corriente no bloqueada como función del incremento de la concentración de toxina. Cada punto representa la media de 3 a 5 experimentos.

5.3.2.4 Comentarios

Es interesante notar que la Tt28 parecería no poseen la clásica díada que puede ser responsable por su efecto relativamente potente sobre los canales Kv1.3 (**Dauplais y cols. 1997**), sin embargo contiene residuos de tirosina en las posiciones 6 y 19 junto a residuos de lisina en las posiciones 12, 14, 22 y 35. Debido a que no se disponen datos comparativos disponibles, los resultados de modelaje de homología y la asignación de la actividad bloqueadora de los canales Kv1.3 a una díada o a otros residuos de

aminoácidos parece ser poco confiable. En este aspecto, estudios de resonancia magnética nuclear proveerán información respecto a los epitopos funcionales para la actividad bloqueadora de los canales de potasio activados por voltaje.

Los canales Kv1.3 junto con los canales de K⁺ activados por Ca²⁺ (IKCa 1) dominan la conductancia de K⁺ en los linfocitos T humanos. Dependiendo de la naturaleza y función fisiológica de las células T, su activación induce un cambio específico en el repertorio de canales de K⁺ (Salusto y col. 2004; Wulff y col. 2003). Por ejemplo, la activación de la memoria efectora de las células T está acompañada de un aumento en el número de canales Kv1.3 sin ningún cambio en los niveles de IKCa 1 (Wulff y col. 2003). La diferencia de la dominancia de canales de K⁺ permite una interferencia específica con su activación utilizando bloqueadores selectivos (Chandi y col. 2004).

Las toxinas y sus derivados constituyen una buena vía como compuestos a utilizar para el desarrollo de nuevos péptidos inmunosupresivos de valor terapéutico (**Mouhat y cols. 2005**). En este aspecto, Tt28 demostró bloquear a los canales Kv1.3 en el rango de lo nanomolar, lo que podría hacerla una potencial candidata para estudios de inmunomodulación.

En la medida que se pueda obtener veneno para continuar los estudios o producir esta toxina mediante sistemas biotecnológicos su utilidad en este aspecto merecería ser estudiada.

5.4. CLONADO Y SECUENCIACIÓN DE UNA TOXINA GAMMA SÍMIL DEL VENENO DE T. TRIVITTATUS. Estudio preliminar presentado en el IX Congreso Panamericano de la Sociedad Internacional de Toxinología. Juriquilla, Querétaro, México. 21 al 25 de Octubre de 2007. Cloning and Peptide sequencing of a gamma-like toxin from the Argentinian scorpion Tityus trivittatus. F.I. Coronas y col.

Recientemente se realizó la secuenciación. caracterización fisiológica y clonado del gen de una toxina gamma (beta toxina) del veneno de *T. trivittatus* (**Coronas y col. 2007**).

El veneno fue separado por HPLC de la manera antes descripta para ambas toxinas anteriores, a partir de lo cual se obtuvieron 70 subfracciones.

Un péptido que eluyó a los 37,59 min se secuenció por degradación automática de Edman, dando la siguiente secuencia KEGYLMDHEGCKLSCFIRPSGYCGR. Esta secuencia completa es similar a la toxina gamma (o Ts 1) de *T. serrulatus* (**Possani y col., 1985**), mostrando un 93,4 % de identidad. Por esta razón se sugiere para este péptido el nombre de toxina gamma-*like* de *T. trivittatus*: Ttgamma-like.

A partir de una biblioteca de cDNA de glándulas productoras de veneno se obtuvieron varios clones entre los cuales uno mostró una secuencia idéntica en el N-terminal a la Ttgamma-like. El péptido codificado por este gen expresa 61 residuos de aminoácidos como péptido maduro, con una masa molecular teórica de 6938,9 Daltons. El péptido aislado mostró una masa molecular experimental de 6939,5 Daltons a.m.u. lo que refuerza la conclusión de que el péptido purificado y el gen clonado corresponden al mismo péptido.

El gen que codifica para la Ttgamma-like posee una secuencia deducida de 84 aminoácidos, los primeros 20 corresponden al péptido señal y 64 al péptido expresado. Los últimos tres residuos GKK son procesados durante la maduración para dar un residuo C-terminal amidado (cisteinamida), lo que exactamente sucede con la Ts 1.

La acción fisiológica de la Ttgamma-like se probó sobre canales de sodio. Resultados preliminares mostraron que una concentración de toxina 0,5 mM es capaz de modificar las corrientes de los canales de Na⁺ humanos subtipo Na_v1.2.

Esta neurotoxina, que se está obteniendo en el presente a fin de continuar con los estudios neurofisiológicos y estructurales, sería la responsable o una de las mayores responsables de la toxicidad del veneno de *T. trivittatus* para los mamíferos.

5.5. COMENTARIOS

Hasta el presente son pocos los componentes de este veneno que han sido caracterizados, y dos de ellos, la TtButantoxina y la Tt28, sin aparente participación en los procesos relacionados con la fisiopatología del envenenamiento.

En el caso de la Tt28, por su potencial uso como moduladora de la funcionalidad de los linfocitos, su estudio puede brindar importante información y eventualmente

utilidad terapéutica, si bien no sería de importancia toxicológica en los envenenamientos por la picadura de este escorpión.

Es diferente, toxicológicamente hablando, el caso de la Ttgamma-like. En este caso, este es el primer componente conocido que puede relacionarse directamente con la toxicidad para mamíferos y por lo tanto con los envenenamientos en humanos. Esta es una gamma toxina, una beta toxina, que actúa sobre los canales de sodio haciendo que estos se abran a un potencial más electronegativo y participando activamente de la "tormenta autonómica". Posiblemente no sea la única de estas toxinas ni de las toxinas de sodio presentes en el veneno de *T. trivittatus*, pero su presencia independientemente de confirmar que estas toxinas están en todos los venenos de *Tityus* y que se relacionan con la toxicidad, nos permite entender otros puntos que hasta el presente los manejábamos, o sólo los explicábamos empíricamente.

Independientemente del aporte a la toxinología del conocimiento de esta beta toxina en el veneno de este escorpión, su presencia explica el porqué el antiveneno producido en Brasil ha sido (y es) efectivo en el tratamiento de los envenenamientos por este escorpión. Siendo la gamma toxina de *T. serrulatus* (Ts 1) una de las principales toxinas de este veneno y poseyendo esta una gran similitud con esta de *T. trivittatus* (Ttgamma-*like*), es explicable que los anticuerpos producidos contra una, sean efectivos para la neutralización de la otra.

Algo de mucho interés son los resultados experimentales obtenidos por investigadores brasileños respecto a la obtención de un antiveneno contra el veneno de *T. serrulatus*, inmunizando conejos toxinas Ts 1 recombinantes. Los anticuerpos así obtenidos fueron capaces de neutralizar el veneno entero de *T. serrulatus* y la toxina aislada, por lo que se postuló su utilización como inmunógeno para la obtención de antiveneno (**Mendes y col. 2008**). La neutralización del veneno entero de escorpiones por anticuerpos específicos también se observó en el veneno de *Centruroides*. Este veneno puede ser neutralizado por un fragmento Fab de un anticuerpo monoclonal contra la toxina CN 2 de *Centruroides noxius* (**Licea y col. 1996; Selisko y col. 2004**).

Estos resultados y las experiencias previas entusiasman respecto a la producción de estos péptidos para la inmunización de animales para obtener antiveneno escorpiónico, biológico cuya limitante al menos en Argentina, es la obtención de veneno.

6- ESTUDIOS INMUNOLÓGICOS

6.1 INTRODUCCIÓN

El veneno de escorpiones es inmunogénico y puede generar anticuerpos, lo que es utilizado para la producción de los antivenenos específicos. Sin embargo la generación de anticuerpos neutralizantes es una tarea ardua debido a la baja concentración de las toxinas de importancia para el envenenamiento en mamíferos y su bajo peso molecular (**Delori y col. 1991; Devaux y Rochat 2002**).

La generación de estos antivenenos puede realizarse mediante la inmunización de animales con homogenatos de telson, tal como se realiza por ejemplo en nuestro país con *T. trivittatus*, en México con *Centruroides* spp. o en Turquía con *Androctonus crassicauda*, o mediante la inmunización de equinos con veneno ordeñado, como en el caso de Brasil, con veneno de *T. serrulatus*.

Ambas formas de inmunización pueden dar antivenenos eficientes, sin embargo por motivos no del todo claros, como se mencionó previamente, muchas veces se obtiene una respuesta similar o superior utilizando homogenatos de télsones respecto a veneno entero, lo que en una primera instancia puede resultar contra-intuitivo, pero esto está fundamentado en la propia experiencia y en la de otros centros productores importantes a nivel mundial, por comunicación personal al autor.

Si bien no se puede asegurar por qué sucede esto, una posible explicación sería que en los homogenatos de télsones no solamente hay péptidos neurotóxicos sino que hay pre-proteínas (dado que utilizamos el sobrenadante líquido del homogenato teniendo en el mismo no solo veneno sino otros componentes de las células, entre ellas péptidos de veneno "inmaduro"). No hay hasta el momento datos publicados que brinden una explicación para esto, pero los mayores productores de suero antiescorpión, como son los dos laboratorios mexicanos productores de ativenenos, Bioclon y Birmex, utilizan como antígenos homogenatos de telson. Sin embargo, otro importante productor de antivenenos, como el Instituto Butantan de San Pablo, utiliza veneno ordeñado.

En la elección de la metodología a usar hay que considerar factores inmunológicos y técnicos. Dentro de los inmunológicos, no hay elementos a nivel de la generación de antivenenos que demuestren que una es mejor que la otra. A nivel

inmunológico podríamos suponer que es mejor utilizar el veneno ordeñado, para obtener un producto más refinado. Sin embargo, si se inmuniza considerando no masa de veneno sino potencias letales (lo que usan quienes inmunizan con homogenatos), empíricamente se están utilizando las dosis de neurotoxinas necesarias para generar respuesta a pesar que se dé más cantidad de proteína.

Por otro lado, pensar en que a similar potencia un antiveneno es "más específico" es un error, ya que los anticuerpos neutralizantes que se obtienen por ambas metodologías son dirigidos a las mismas neurotoxinas, a sus precursores, o a componentes no tóxicos que generan anticuerpos neutralizantes (Chávez-Olortegui y col., 1997) que se encuentran en el veneno, y obviamente se encontrarán también en el homogenato de télsones.

Algunos investigadores trabajando sobre venenos de escorpiones observaron que formas poliméricas y compuestos no tóxicos de estos venenos, podían ser inmunogénicos y generar anticuerpos neutralizantes (**Kharrat y col. 1997**; **Chávez-Olórtegui y col., 1997**; **Guatimosin y col. 1999**). Posiblemente, en los casos de los homogenatos, además del veneno que puede extraerse de los mismos, pueden existir otras proteínas inmunogénicas relacionadas con el veneno, presentes en las células productoras de veneno y liberadas por la rotura de las células, las que podrían generar anticuerpos neutralizantes, y de esta forma explicar la buena respuesta hallada inmunizando con los homogenatos.

Si existe una gran ventaja en la inmunización con veneno ordeñado, que es la posibilidad de mantener vivos a los escorpiones y formar pooles de veneno de acuerdo a las necesidades y poder preveer a largo tiempo las inmunizaciones. Esto es más dificultoso cuando se usa como inmunógeno el homogenato de télsones. En este último caso se depende de la captura o compra o donación de estos, lo que en base a la experiencia, es muy difícil de prever al menos en Sudamérica, no tanto así en el hemisferio norte, posiblemente por la cantidad de escorpiones que pueden encontrarse.

En Argentina los *T. trivittatus* son sinantrópicos y no muy común de hallar, los otros *Tityus* sinantrópicos o no, son de difícil hallazgo. En México por ejemplo, los *Centruroides* pueden ser sinantrópicos o peridomiciliarios o rurales y su hallazgo es extremadamente frecuente, lo mismo que puede suceder con los *Androctonus* o *Buthus* en el norte de África.

En este capítulo se mostrarán algunos estudios inmunoquímicos de interacción primaria y secundaria de diferentes antivenenos antiescorpiónicos frente a homogenatos

de télsones, así como la neutralización observada por estos antivenenos frente venenos de *T. trivittatus* y de otras especies de escorpiones de otros continentes.

6.2 MATERIALES

6.2.1 Venenos:

Homogenatos de telson:

Se trabajó con homogenatos de telson realizados por los métodos antes descriptos de *T. trivittatus* procedentes de las provincias de Santiago del Estero, Córdoba, Santa Fe, Entre Ríos, Catamarca y La Rioja. Se trabajó también con veneno de *T. confluens* de las provincias de Jujuy y Catamarca. Todos los venenos fueron guardados en alícuotas y disueltos en NaCl 0,15 M a -20°C hasta su utilización.

Veneno ordeñado:

Se utilizó veneno de *T. trivittatus* obtenido por estimulación eléctrica de ejemplares provenientes de las provincias de Santa Fe (Santa Fe) y Entre Ríos (Paraná). El veneno de *A. australis*, *B. occitanus*, *L. quinquestriatus hebraeus*, *P. transvaalicus* y *P. granulatus*, fue donado por Bioclon S.A. de C.V. de México DF adquirido previamente a Latoxan (Francia). Estos venenos fueron obtenidos por estimulación eléctrica, liofilizados y guardados a -20°C hasta su utilización para lo cual se suspendieron en NaCl 0,15 M. Los números de lote, son los mismos que los descriptos para toxicidad (ver Capítulo 3).

6.2.2 Antivenenos:

Se utilizaron:

- 1) **Suero Antiescorpión** (Lote 907, Vto. 07/2003). Producido por el INPB inmunizando equinos con homogenato de télsones de *T. trivittatus*, de aquí en adelante **A-Tt.** Su presentación es fragmentos F(ab')₂ de inmunoglobulinas equinas, obtenidas por la inmunización de animales con homogenatos de telson de *T. trivittatus*, en frascos ampolla de 2 ml. Contenido de proteínas: 44,80 ± 6,33 mg/ml.
- 2) Suero Antiaracnídico (Soro Antiaracnídico, Lote 950ª d 921, Vto. 11/15/1998). Del Instituto Butantan de Sao Paulo, Brasil. producido inmunizando equinos con veneno ordeñado de *T. serrulatus* y también contiene anticuerpos contra *Loxosceles gaucho* y *Phoneutria* sp., dado que es un polivalente antiaracnídico de aquí en adelante AA. Su presentación es fragmentos F(ab')₂ de inmunoglobulinas equinas en ampollas de 5 ml. Contenido de proteínas: 43,17 ± 3.,06 mg/ml.
- 3) **Suero Antiescorpiónico** (Soro Antiescorpiónico, Lote 0204040/E, Vto. 20/03/2005). Del Instituto Butantan, producido inmunizando equinos con veneno ordeñado de *T. serrulatus*, de aquí en adelante **A-Ts**. Su presentación es fragmentos F(ab')₂ de inmunoglobulinas equinas, obtenidas por la inmunización de animales con veneno ordeñado de *T. serrulatus*, en ampollas de 5 ml. Contenido de proteínas 5,39 ± 0,13 mg/ml.
- **4) Alacramyn** NR. De Bioclón S.A. de C.V., México DF, (Lote B8J04, Vto. 06/2001) producido inmunizando equinos con homogenato de télsones de *Centruroides* spp., de aquí en adelante **A-Cn**. Su presentación es fragmentos F(ab')2 de inmunoglobulinas equinas, en frasco ampolla en forma liofilizada a reconstituir en 5 ml. Contenido de proteínas 4,53 ± 1,24 mg/ml.

6.3 METODOLOGÍA

6.3.1 Doble precipitación en gel de agar (doble difusión en gel de agar, técnica de Ouchterlony).

Se realizó en agarosa al 1% (Sigma) en PBS pH 7.4 que se dejó gelificar en placas de Petri o en portaobjetos (**Margni 1983**; **Siles Villarroel y col., 1974 a y b, 1976/77**). Brevemente, se enfrentaron los diferentes AVs con soluciones de los venenos de *T. trivittatus* de diferentes regiones (0,5 mg/ml en NaCl 0,15 M).

Los ensayos se realizaron con diferentes diluciones sucesivas de los antivenenos, en base dos desde antiveneno puro hasta 1/32, enfrentándolos a los diferentes venenos de *T. trivittatus*.

Adicionalmente, se enfrentó el homogenato de télsones de *T. confluens* de Jujuy y Catamarca o de *T. trivittatus* (*pool* de las diferentes provincias) frente a los antivenenos antes mencionados.

Brevemente, en portaobjetos se colocaron 4 ml de agarosa al 1,2% en NaCl 0,15M y una vez gelificada se le realizaron pocillos de 10-12 ml de capacidad. Las muestras de venenos y de antivenenos se sembraron de la forma descripta en las figuras con 10-12 µl de cada muestra y se dejaron en incubación en cámara húmeda a temperatura de laboratorio durante 48 horas, tras las cuales se pusieron a lavar en NaCl 0,15 M con recambios cada 12 hs durante 48 hs y dos lavados finales de 2 hs con agua destilada. Luego se deshidrataron a temperatura de laboratorio y se colorearon con Negro Amido.

6.3.2 Ensayo Inmunológico de Enzimas Ligadas (ELISA).

Se sensibilizaron placas de ELISA de 96 pocillos (Falcon) con soluciones de homogenatos de telson o de veneno ordeñado. El veneno o el homogenato fueron diluidos en buffer carbonato de sodio 0,1 M pH 9,5 a una concentración de 5 μg/ml. En cada placa se colocaron 100 μl de solución de veneno u homogenato por pocillo. Las placas sensibilizadas se dejaron toda la noche a 4°C y se lavaron tres veces durante 5 minutos con TBS 0,05 M pH 8,0 - Tween 20 al 0,05%. Posteriormente las placas se

incubaron con solución de bloqueo (100 µl por pocillo de TBS pH 8,0 con seroalbúmina bovina al 10%) durante 2 hs a temperatura ambiente a fin de bloquear las uniones inespecíficas, tras lo cual se lavaron con PBS-Tween, con tres lavados de cinco minutos cada uno.

Se realizaron diluciones seriadas en base 1,3 de los diferentes antivenenos y se incubaron 1 h a 37°C tras lo cual se realizaron tres lavados de 3 minutos cada uno con TBS-Tween-BSA. Luego de los lavados se colocó en cada pocillo 100 μl de anti-IgGTotal de equino (Sigma) en una dilución de 1/5000 en TBS-Tween-BSA. Se incubó 1h a 37°C, y tras la incubación se realizaron cuatro lavados (los dos primeros con TBS-Tween-BSA y los dos últimos con TBS sólo). La reacción se reveló con OPD (Sigma) incubándose 10 minutos en la oscuridad a temperatura ambiente y se detuvo con H₂SO₄ 3,0 N tras lo cual se realizó la lectura a una longitud de onda de 490 nm.

Adicionalmente se realizó el ensayo de ELISA para los venenos de los escorpiones sudafricanos *P. transvaalicus* y *P. granulatus* de la misma forma descripta para los de *T. trivittatus*.

6.3.3 Ensayos de neutralización de la letalidad específica y para-específica

Dado lo escaso y difícil de obtener de estos venenos, los estudios se realizaron con ensayos a dosis fija de antiveneno y dosis fija de veneno observando los porcentajes de neutralización mediante esta metodología, y cuando se pudo mediante la determinación de la DE₅₀ (Dosis Efectiva media, la dosis de veneno que protege al 50% de la población en estudio).

La reactividad inmunológica del veneno de *T. trivittatus* también se estimó mediante ensayos de neutralización para-específica utilizando antiveneno anti *T. trivittatus* frente a los venenos de *A. australis*, *B. occitanus*, *L. quinquestriatus*, *P. transvaalicus* y *P. granulatus*.

6.3.3.1 Dosis fijas de veneno y de antiveneno.

Se inocularon ratones con 3 DL_{50} de veneno puro (ordeñado) de T. trivittatus de las provincias de Entre Ríos o Santa Fe, las cuales fueron previamente incubadas con

100 μl de los antivenenos **A-***Tt*, **AA** o **A-***Cn*, durante 30 minutos a 37°C. El volumen final por ratón fue llevado a 500 μl por ratón. Se utilizaron ratones de la cepa NIH (18-22g), los cuales fueron inoculados por la vía i.p. Los animales fueron controlados durante 24 horas y se registró el número de muertos.

Adicionalmente se estudió la protección conferida por el suero Antiescorpión (INPB) sobre homogenatos de telson de *T. confluens*. Para esto se desafió a ratones con 2,5 DL₅₀ i.p. de homogenato de télsones de *T. confluens*, los cuales se incubaron con 1,5 DE₅₀ para homogenato de telson de *T. trivittatus*, de antiveneno Antiescorpión (INPB, Lote 906). Esto se realizó así dada la escasa cantidad de veneno de *T. confluens* disponible. Brevemente, grupos de 6 ratones cepa CF-1 (18-22 g) se inocularon con 0.5 ml i.p. con una muestra conteniendo 2,5 DL₅₀ de veneno y 1,5 DE₅₀ (para el veneno de *T. trivittatus*) del antiveneno llevados a volumen final con NaCl 0,15 M, preincubados por 30 minutos a 37°C. Como controles se utilizaron ratones inoculados solo con el veneno en un volumen final de 0,5 ml en NaCl 0,15 M. Las muertes se registraron hasta las 48 horas posteriores al desafío.

6.3.3.2 Determinación de dosis efectiva media.

Esta se determinó utilizando homogenatos de telson de *T. trivittatus* de Santa Fe y la provincia de Córdoba, veneno ordeñado de *T. trivittatus* de Santa Fe, y venenos de *A. australis, B. occitanus, L. quinquestriatus, P. transvaalicus* y *P. granulatus*.

- a- Se realizó mediante la inoculación i.p. a ratones CF-1 (18-22 g de peso, 6 ratones por nivel de dosis) de un mezcla de 4 DL₅₀ de homogenato de telson de *T. trivittatus* provenientes de las provincias de Santa Fe o Córdoba o con veneno ordeñado proveniente de la provincia de Santa Fe con diferentes dosis de **A-Tt**. El volumen final de inoculación por ratón fue de 500 μl. Tras la inoculación los ratones se controlaron durante 24 horas y se registró la cantidad de animales sobrevivientes. La DE₅₀ se definió como la cantidad de antiveneno expresada en microlitros que protegió al 50% de los ratones tras las 48 hs de inoculación.
- b- Se realizó mediante la inoculación i.p. a ratones NIH (18-22 g de peso, 6 ratones por nivel de dosis) de un mezcla de 3 DL₅₀ de venenos de *A. australis*, *B. occitanus*, *L. quinquestriatus*, *P. transvaalicus* y *P. granulatus*

con diferentes dosis de **A-***Tt* o **A-***Cn*. El volumen final de inoculación por ratón fue de 500 μ l. Tras la inoculación los ratones se controlaron durante 24 horas y se registró la cantidad de animales sobrevivientes. La DE₅₀ se definió como la cantidad de antiveneno expresada en microlitros que protegió al 50% de los ratones tras las 48 hs de inoculación.

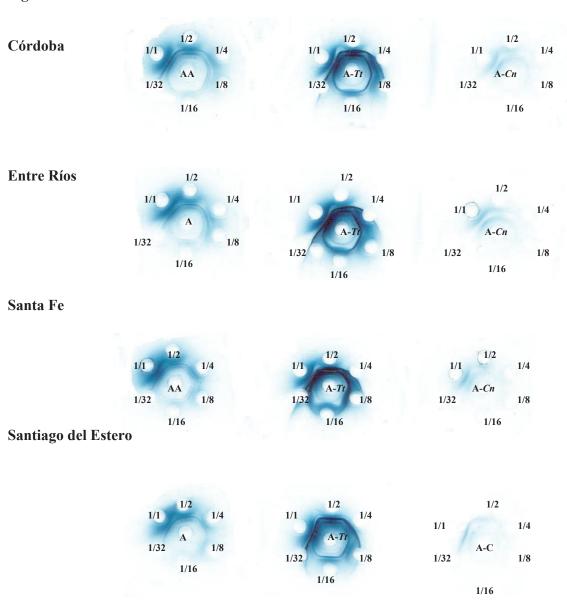
Para todos los experimentos realizados con animales se utilizaron ratones provistos por el Bioterio del INPB – A.N.L.I.S. "Dr. Carlos G. Malbrán". Los animales fueron mantenidos bajo un ambiente controlado y recibieron agua y alimento *ad libitum*. En todos los casos se siguieron las normas éticas institucionales del INPB referentes al cuidado y manejo de animales, en acuerdo con las recomendaciones del National Reseach Council (2002).

6.3.3.3 Determinación de proteínas:

Las proteínas de los venenos fueron determinadas por el método de Bradford utilizando el kit Protein Assay Kit (BioRad) y las proteínas de los antivenenos fueron determinadas por el método de Biuret, utilizando el kit Proti2 (Wiener) según se describió en capítulos anteriores.

6.4 RESULTADOS

6.4.1 Doble inmunodifusión en gel de agar


Cuando se enfrentaron los diferentes antivenenos con los venenos de *T.t.* provenientes de diferentes provincias se pudo observar en todos los casos reactividad inmunoquímica importante. Dado que la cantidad de bandas y su intensidad de teñido era muy grande, se ajustó la cantidad de proteínas de cada antiveneno a ser enfrentada a

la solución de homogenato de telson, tomando como valor a aquel de menor concentración proteica (**A-Cn**). La reactividad de los diferentes antivenenos frente a los homogenatos se muestra en la **Figura 6.1**.1.

La Figura 6.1.2 muestra las inmunoprecipitaciones de los sueros en estudio frente a los venenos de escorpiones africanos y del medio oriente.

La Figura 6.1.3 muestra las inmunoprecipitaciones del homogenato de telson de *T. confluens* frente a los antivenenos utilizados en este estudio.

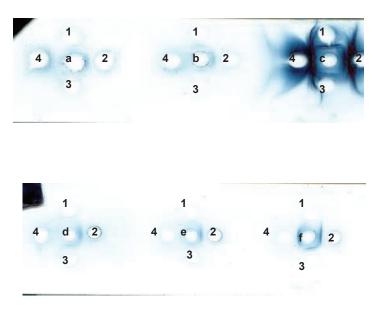

Figura 6.1.1.

Figura 6.1.1. Doble inmunodifusión de agarosa al 1,2%. Antivenenos: AA (Izquierda), A-*Tt* (Centro) y A-*Cn* (derecha) frente a los venenos (homogenatos de telson) de *T. trivittatus* de diferentes provincias

de la Argentina. Cada provincia se indica sobre las respectivas figuras. Se hizo reaccionar el veneno puro y diluciones seriadas de los mismos en base 2 desde 1/2 a 1/32. Se sembraron 10 μ l de una solución de 1 μ g/ μ l de los distintos venenos y 10 μ l de cada antiveneno. La reactividad inmunoquímica fue importante en el caso de los venenos anti *Tityus*, siendo mayor en el caso del *T. trivittatus* específico (A-Tt), que es realizado con homogenato de telson de ese veneno. El AA se realiza inmunizando animales con veneno ordeñado de *T. serrulatus* por lo que los anticuerpos que se detectan son los dirigidos contra el veneno y no otros elementos celulares. La reactividad frente al A-Cn podría ser debida a toxinas compartidas o a elementos del telson que posean reactividad cruzada.

Figura 6.3.2

Figura 6.3.2. Doble inmunodifusión de agarosa al 1,2%. Antivenenos: **1-** A-Ts, **2-**AA, **3-**A-Cn, **4-**A-Tt. Venenos: **a:** Parabuthus transvaalicus; **b:** Parabutus granulatus; **c:** Tityus trivittatus; **d:** Androctonus australis; **e:** Buthus occitanus tunetanus; **f:** Leiurus quinquestriatus haebreus. Se sembraron 10 µl de una solución de 1 µg/µl de los distintos venenos y 10 µl de cada antiveneno. La reactividad inmunoquímica fue muy baja en todos los casos observándose una mayor reactividad frente al veneno de Leiurus quinquesstriatus haebreus.

Figuras 6.3.3

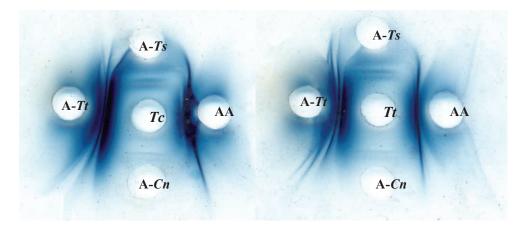
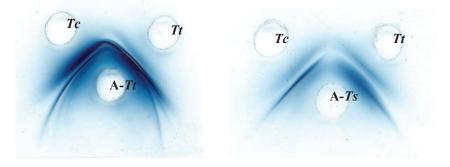



Figura 6.3.3.a. Doble inmuno difusión del homogenato de télsonesde T. confluens frente a los diferentes antivenenos. Se realizó en agarosa al 1,2% en NaCl 0,15 M, icubados por 48 hs a temperatura ambiente, lavados, deshidratados y coloreados con Negro Amido. En la izquierda se muestra la difusión de los diferentes antivenenos (10 μl) contra 10 μg de homogenato de telson de *Tityus confluens* (*Tc*). A la derecha, la misma técnica pero utilizando 10 μg de homogenato de telson de *Tityus trivittatus* (*Tt*). A-*Ts*: antiveneno anti *T. serrulatus* (Soro Antiescorpiónico, Instituto Butantan); A-*Tt*: antiveneno Anti *T. trivittatus*, Suero Antiescorpión, INPB); AA: Antiveneno Antiaracnídico (Anti *T. serrulatus*, Anti *Loxosceles gaucho* and anti *Phoneutria venoms*; Soro Antiaracnídico, Instituto Butantan); A-*Cn*: Anti *Centruroides* spp. venom (Alacramyn, Instituto Bioclón S.A. de C.V.). Obsérvese la fuerte reactividad de los diferentes antivenenos frente al veneno de *T. confluens* y que esta es muy similar a la que se observa frente al de *T. trivittatus*. El veneno Anti *Centruroides* (A-*Cn*) muestra una ligera reactividad.

Figura 6.3.3.b. Doble inmunodifusión en similares condiciones que la figura anterior. El antiveneno anti *T. trivitattus* (izquierda) y el anti *T. serrulatus* (derecha) se enfrentaron con los venenos de *T. confluens* (*Tc*) y *T. trivittatus* (*Tt*). Puede observarse la lata reactividad entre ambos venenos y ambos antivenenos y la muy similar aunque no idéntica reactividad del veneno de *T. confluens* respecto a la observada con el de *T. trivittatus*. El *A-Tt* parecería que reconoce algunos componentes comunes en los homogenatos de télsones de ambos escorpiones.

6.4.2 ELISA

Se observó reactividad inmunoquímica en todos los casos. La misma fue mayor casi todos los casos utilizando los antivenenos A-*Tt* y AA. El AA y el A-*Ts* son generados a partir de la inmunización con el mismo veneno y nominalmente su potencia neutralizante sería similar, por lo que en una primera instancia no resulta clara la diferencia en reactividad que se observa mediante este estudio.

Una posible explicación a la alta reactividad del AA, podría ser que existan componentes que actúen de forma cruzada y que se encuentren en los venenos de *Loxosceles y Phoneutria*, que aumente la reactividad inmunoquímica y que esta pueda ser detectada mediante esta técnica. Si bien no se dispone de datos la reactividad cruzada entre componentes como la hemocianina u otros comunes entre los diferentes arácnidos podrían potencialmente cruzar inmunoquímicamente, o aún haber cruzamiento entre otros componentes de los venenos como hialuronidasas o péptidos.

El A-Cn mostró una baja reactividad en todos los casos, lo que resultaría obvio considerando que este se realiza con veneno de *Centruroides*. Por otro lado la reactividad que se observa por esta técnica, como la observada por inmunoprecipitación, pueden deberse en parte a anticuerpos anti componentes del telson.

En la figura 6.4.2 se muestra el ensayo de ELISA de los cuatro antivenenos frente al veneno de los dos *Parabuthus* sudafricanos. En ambos casos se observa que la reactividad de los antivenenos sudamericanos anti *Tityus* es mayor que la del norteamericano anti *Centruroides*, si bien esta es mucho menor, de acuerdo a lo esperado, que la observada frente al veneno de *T. trivittatus*.

Figuras 6.4.1

Figura 6.4.1. a y b .ELISA de los antivenenos frente a un *pool* de homogenatos de télsones de *T. trivittatus* de diferentes regiones de la Argentina (a) y de la ciudad de La Rioja (b).

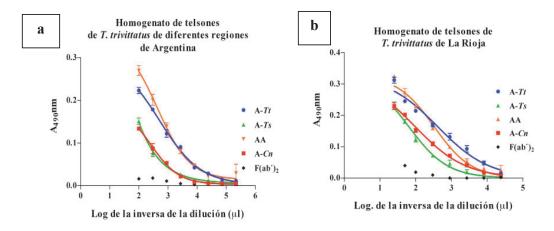


Figura 6.4.1. c y d. ELISA de los antivenenos frente a un *pool* de homogenatos de télsones de *T. trivittatus* de la ciudad de Santa Fe (c) y de Paraná, Entre Ríos (d).

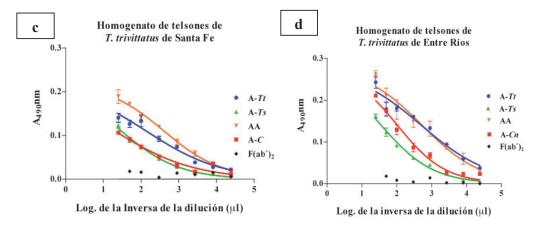
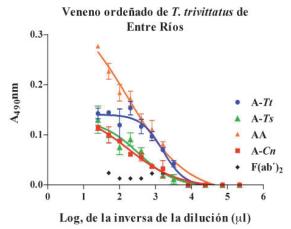
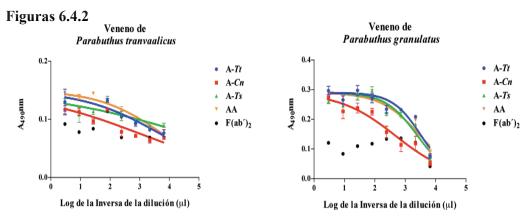




Figura 6.4.1.e. ELISA de los antivenenos frente al veneno obtenido por estimulación eléctrica de ejemplares de *T. trivittatus* de la ciudad de Paraná, Entre Ríos.

Figuras 6.4.1. ELISA de homogenatos de télsones de *Tityus trivittatus* de diferentes regiones de argentina frente a los antivenenos A-Tt del INPB (\mathbb{Z}), producido con homogenato de télsones de T. trivittatus); A-Ts (\triangle)Antiescorpiónico, producido con veneno ordeñado de T. serrulatus; AA, Antiaracnídico (\bigvee), producido con veneno ordeñado de T. serrulatus, Phoneutria y Loxosceles gaucho) y Alacramyn (\blacksquare),A-Cn, producido con homogenato de télsones de Centruroides). En todos los casos la mayor reactividad se observó frente a los antivenenos A-Tt y AA. Como control negativo se utilizó un antiveneno antiofídico (Bivalente, INPB), con formas farmacéutica de fragmentos $F(ab')_2$ de inmunoglobulinas equinas (\spadesuit).

Figuras 6.4.2. ELISA de veneno ordeñado de *Parabuthus tranvaalicus* y *Parabuthus granulatus*. de diferentes regiones de argentina frente a los antivenenos A-*Tt* del INPB (②), producido con homogenato de télsones de *T. trivittatus*); A-*Ts* (▲)Antiescorpiónico, producido con veneno ordeñado de *T. serrulatus*; AA, Antiaracnídico (▼), producido con veneno ordeñado de *T. serrulatus*, *Phoneutria* y *Loxosceles gaucho*) y Alacramyn (■),A-*Cn*, producido con homogenato de télsones de *Centruroides*). En ambos casos los antivenenos anti *Tityus* reaccionaron con mayor fuerza que el anti *Centrutoides*. Como control negativo se utilizó un antiveneno antiofidico (Bivalente, INPB), con forma farmacéutica de fragmentos F(ab′)₂ de inmunoglobulinas equinas (◆).

Tabla 6.1. EC ₅₀ de los diferentes antivenenos utilizados frente a los diferentes venenos.

venenos.					
Fuente de Veneno (V) U Homogenato (H)	A-Tt	AA	A-Ts	A-Cn	F(ab') ₂
E. Rios (V)	82.0 (47-144)	374 (302-463)	20 (12-33)	14 (9-22)	$2 \times 10^{-2} $ (2.3×10 ⁻⁵ - 19.5)
Pool de diferentes regiones (H)	872 (765-995)	1184 (905-1550)	122 (101-148)	106 (90-125)	$1 \times 10^{-2} $ (1.2x10 ⁻⁵ - 8.7)
Santa Fe (H)	138 (101-187)	409 (325-514)	30 (25-36)	20 (13-32)	1.9 x 10 ⁻¹³ (1.7 - 2.1x10 ⁻¹³)
E. Ríos (H)	511 (371-705)	540 (363-802)	36 (31-42)	105 (85-131)	$2 \times 10^{-2} 2 \times 10^{-7} - 2564)$
La Rioja (H)	414 (327-523)	330 (271-402)	64 (56-7)	97 (86-110)	7.3 (3.8 - 14.0)

La Tabla indica la EC50 (dosis de antiveneno necesaria para alcanzar la mitad de la lectura máxima de absorbancia a 490nm) de los diferentes antivenenos frente a los diferentes venenos estudiados, Se observa una importante reactividad entre los tres antivenenos anti *Tityus* mientras que la reactividad frente al heterólogo A-*Cn* es la menor. Si se considera la cantidad de proteínas de cada antiveneno, las diferencias se estrechan, dada las grandes diferencias existentes entre algunos de ellos.

6.4.3 Ensayos de neutralización de la letalidad específica y para-específica

6.4.3.1 Dosis fijas de veneno y de antiveneno.

6.4.3.1.a. Neutralización del veneno de *T. trivittatus* por los antivenenos en estudio. Todos los antivenenos fueron eficientes en neutralizar la letalidad producida por 3,0 DL₅₀ de veneno de *T. trivittatus* de Santa Fe y de Entre Ríos. El A-*Tt* y el AA fueron eficientes en neutralizar bien ambos venenos (100% de protección) mientras que el A-*Cn* solo neutralizó parcialmente el veneno de *T. trivittatus* de Entre Ríos (40% de protección). Si bien ha sido un solo ensayo, podría decirse que aunque muy baja, algunos anticuerpos anti *Centruroides* son capaces de reconocer el veneno de *T. trivittatus*.

6.4.3.1.b. Neutralización del veneno de T. confluens. 1,5 DE₅₀ frente al veneno de T. trivittatus protegió al 100% de los ratones desafiados con 2.5 DL₅₀i.p. de veneno de T. confluens. Esto demuestra que independientemente de la reactividad inmunoquímica cruzada, el veneno de T. trivittatus generaría anticuerpos neutralizantes del veneno de T. confluens.

6.4.3.2 Determinación de dosis efectiva media.

6.4.3.2.a. Neutralización de muestras de veneno de *T. trivittatus* de diferentes provincias por el antiveneno Antiescorpión del INPB.

El **A-***Tt* fue efectivo en neutralizar la potencia letal de 4 DL₅₀ de homogenato de telson de escorpiones procedentes tanto de Santa Fe o de Córdoba. Las DE₅₀ determinadas fueron de 58,7 μl (i.c. 95% 17,1-201,1 μl) y 40,8 μl (i.c. 95% 38,3-42,66 μl) para el homogenato y el veneno de Santa Fe respectivamente y de 61,9 μl (i.c. 95% 13,0 – 294,1 μl) y de 50,5 μl (i.c. 95% 9,1-290,7 μl) para la neutralización de homogenatos de veneno de Córdoba. Lamentablemente por falta de veneno no se pudo ajustar la dosis, si bien los valores absolutos encontrados y la observación de los protocolos muestran mucha similitud en cuanto a la potencia neutralizante.

Es importante destacar que el antiveneno utilizado se desarrolló utilizando como inmunógeno homogenato de télsones de T. trivittatus de Santiago del Estero. Esto muestra que a pesar del origen y posibles diferencias bioquímicas entre los venenos de los escorpiones de diferentes provincias, la neutralización cruzada sería lo suficientemente buena como para neutralizarlos. Estimando en DL50 neutralizadas por vial por el método calculado en varias farmacopeas (Potencia= nº DL₅₀ de desafío / $DE_{50} = DL_{50}/\mu l$, que se lleva para expresarla a DL_{50} neutralizadas por ml de antiveneno) (Farmacopea de los EEUU Mexicanos, 2000), en estos casos entonces se observa una neutralización de 68 DL₅₀/ml y de 98 DL₅₀/ml para la neutralización del homogenato de telson o de veneno de Santa Fe, y de 65 y 79 DL₅₀/ ml para las muestras de homogenato de telson de la provincia de Córdoba. Si se considerase la neutralización adaptando la fórmula descripta en la Farmacopea de San Pablo, Brasil (Potencia= (nº DL₅₀ de desafío -1) / DE₅₀ = DL₅₀/ μ l, que se lleva para expresarla a DL₅₀ neutralizadas por ml de antiveneno) (Ministerio de Saúde 1996), En este caso se resta 1 a la cantidad de DL₅₀ ya que obviamente si han muerto la mitad de los ratones en el experimento, es que una DL₅₀ no se ha neutralizado. Esta, a mi entender, se ajusta mejor a la realidad. En este caso las potencias neutralizantes son igualmente buenas, para el homogenato de telson y el veneno de Santa Fe serían de 51 y 74 DL₅₀/ml respectivamente y para los homogenatos de Córdoba de 46 y 40 DL₅₀/ml. Si consideramos que la potencia de los antivenenos mexicanos, de los mejores en el mercado respecto a la respuesta terapéutica (Dehesa-Dávila y Possani 1994), neutralizan 30 DL₅₀/ml, la potencia obtenida en el antiveneno argentino es aceptable.

6.4.3.2.b. Neutralización de venenos de escorpiones africanos y del medio oriente por los antivenenos anti *T. trivittatus* y el anti *Centruroides*.

Se observó la neutralización para-específica brindada por el **A-***Tt* y el **A-***Cn* sobre venenos de escorpiones africanos, si bien este fue muy baja y lejos de los valores que la harían adecuada para los fines terapeúticos.

Los experimentos de neutralización mostraron diferentes niveles de protección conferida por los antivenenos A-Tt (sudamericano) o A-Cn (norteamericano) frente a 3 LD₅₀ i.p.). Las DE₅₀s frente al veneno de Buthus occitanus fueron de 184 μ l y 214 μ l para el A-Cn y el A-Tt respectivamente. Contra el veneno de Androctonus australis

fueron de 233 μ l para el A-Cn y fue mayor de > 250 μ l para el A-Tt. Frente al veneno de *Leiurus quinquestriatus* las dosis fueron de 440 μ l para el A-Cn y mayor de 500 μ l para el A-Tt.

La neutralización frente a los venenos de *Parabuthus* fue pobre con ambos antivenenos, sin embargo fue mayor la conferida por el A-Tt. El veneno de P. transvaalicus fue pobremente neutralizados si bien fue mucho mejor con el A-Tt (ED₅₀ mayor a 500 μ l) dado que el A-Cn no mostró ningún tipo de protección. El veneno de P. transvaalitus fue neutralizado con una DE₅₀s de 110 μ l y de 165 μ l para el A-tr y el A-tr0 respectivamente. Ver **Figura 6.5** y **Tabla 6.2**.

Figura 6.5

Neutralización paraespecífica de antivenenos escorpiónicos sobre venenos de escorpión

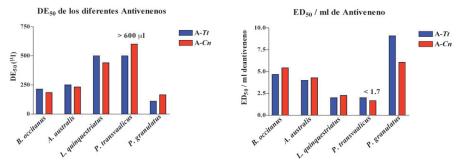


Figura 6.5. Se muestra las DE_{50} estimadas para el antiveneno Antiescorpión (A-Tt), en barras de color azul, y la del Alacramyn (A-Cn), en barras de color rojo. El gráfico de la derecha expresa la capacidad neutralizante como Dosis Efectiva Media (DE_{50}) que indica la cantidad de microlitros necesarias para neutralizar 3 DL_{50} de veneno de los diferentes escorpiones. El de la derecha, la cantidad de DE_{50} contenidas en 1 ml de antiveneno. Obsérvese que aunque débiles, las neutralizaciones por en A-Tt (sudamericano), es más efectivo para neutralizar el veneno de los escorpiones sudafricanos (Parabuthus) mientras que el A-Cn (norteamericano) es algo mejor para la neutralización de los venenos de Androctonus, Buthus y Leiurus (todos del hemisferio norte).

Puede observarse que los antivenenos probados podrían a muy altas dosis neutralizar la toxicidad de venenos de escorpiones africanos, si bien los volúmenes en estas condiciones los harían poco prácticos o convenientes para uso terapéutico. No obstante estos resultados, hay que considerar que se realizaron en ratones, con desafío de 3 DL50 y mediante experimentos de pre-incubación. Si bien estos son los métodos utilizados en todo el mundo para el control de antivenenos, no necesariamente indican que estos puedan servir terapéuticamente, guiándonos solamente por ese resultado. Para

tener una mejor idea de la real capacidad neutralizante, se deberían hacer estos ensayos con dosis de desafío mayores (8 o 10 DL50), establecer las DE_{100} (Dosis Efectiva que protegerá al 100% de la población) y/o diseñar experimentos de rescate. Los experimentos con grandes dosis de desafío son más dificultosos y costosos por el gasto de veneno (en especial con estos tipos de venenos) y los de rescate presentan más trabajo para su diseño y en ocasiones para su interpretación. Sin embargo, cuando no se disponen de otras herramientas son necesarios para establecer la capacidad neutralizante de antivenenos.

Se observa también que la neutralización es mejor utilizando los antivenenos provenientes de escorpiones de la misma latitud.

Tabla 6.2. Neutralización heteróloga. Potencias neutralizantes.

Venenos	Neutralización por Antivenenos							
	A-Cn				A-Tt			
	DE ₅₀ (μl)	DL_{50}/ml $\mu g/ml(*)$		μg/ml(*)	DE ₅₀ (μl)	DL ₅₀ /ml		μg/ml(*)
		3 DL	2DL			3 DL	2 DL	
B. occitanus	184	16.3	10.9	32.6	215	14.0	9.3	28.0
	(120-281)			(228.2)				(196.0)
A. australis	233	12.9	8.6	32.3	> 250	< 12	< 8	< 30.0
	(221-246)			(103.2)				(< 96)
L. quinquestriatus	440	6.8	4.6	13.6	> 250	< 12	<8	< 24.0
1 1	(435-444)			(74.8)				(< 66)
P. transvaalicus	> 600	< 5.0	< 3.3	< 234.5	500	6	4	281.4
				(< 660)				(792)
P. granulatus	165	18	12.1	111.6	110	27.3	18.2	169.3
				(846)				(1283.1)

Tabla 6.2. Las DE_{50} se expresan en μl de antiveneno y los i.c. del 95% se indican entre paréntesis. La potencia neutralizante también se expresa como DL_{50}/ml de antiveneno expresada según la Farmacopea Mexicana (columna 3DL) o según las sugerencias de la Farmacopea de San Pablo (columna 2DL, que significa $2DL_{50}= \cdot DL_{50}$ de desafío – 1 DL_{50} residual, ver texto en 6.4.3.2.a), y en μg de veneno neutralizadas por ml de antiveneno. La cantidad de veneno neutralizada en $\mu g/ml$ se expresa como proteínas medidas por el método de Bradford y por su peso seco (entre paréntesis).

6.5. COMENTARIOS

Los venenos de *T. trivittatus* de diferentes partes de Argentina fueron reconocidos inmunoquímicamente y neutralizados eficientemente por el antiveneno utilizado, que tuvo como principales inmunógenos télsones de ejemplares provenientes de Santiago del Estero. En el caso de un antígeno tan dificultoso de hallar, este es un dato de importancia, siendo que los resultados parecerían indicar que la neutralización

cruzada es suficiente como para que un antiveneno producido con material de una provincia pueda generar anticuerpos neutralizantes para los venenos de otra provincia. El antiveneno anti-escorpión es producido por el INPB y distribuido vía Ministerio de Salud a los diferentes Ministerios de Salud provinciales, siendo el único disponible de producción nacional para el tratamiento de estos envenenamientos (**De Titto y col. 1999**). De ahí la importancia de este dato.

Por otro lado, si bien es necesaria más experimentación, el antiveneno A-*Tt* sería eficiente para neutralizar el de *T. confluens*. Comunicaciones personales de personal de salud de provincias del Noroeste del país reforzarían esta idea. Actualmente se está recolectando material para trabajar en este aspecto.

También se ha observado que los antivenenos anti *T. serrulatus* (AA y A-*Ts*) brindan una buena reactividad con el veneno de *T. trivittatus* y *T. confluens*. En estudios anteriores se observó que el A-*Tt* neutralizaba mejor que el AA el veneno de *T. trivittatus*, si bien ambos proveían buena protección. Serían necesarios experimentos de neutralización para ver la capacidad de esos antivenenos sobre los venenos de los *T. trivittatus* de diferentes partes del país.

Respecto a la reactividad inmunoquímica y la neutralización heteróloga de los venenos de escorpiones del Norte de Africa (*Buthus occitanus*, *Androctonus australis*), Medio Oriente (*Leiurus quinquestriatus*) y Sudáfrica (*Paratuthus transvaalicus y Parabuthus granulatus*), se pudo observar una baja reactividad frente a todos los antivenenos.

Si bien la reactividad inmunoquímica fue muy baja, se pudo notar una mayor reactividad y neutralización del A-Tt frente a los Parabuthus y del A-Cn frente a los de B. occitanus, A. australis, mientras que ambos antivenenos no neutralizaron bien al veneno de L. quinquestriatus. Este último veneno y el de P. transvaalicus fueron los más difíciles de neutralizar por ambos antivenenos. Estos resultados parecerían verse apoyados por el estudio de ELISA realizado frente al veneno de los escorpiones sudafricanos. Los anti-Tityus se mostraron más reactivos que el A-Cn frente a los venenos de ambos Parabuthus, en concordancia a los resultados obtenidos por los ensayos de neutralización. No hay una explicación directa sobre el porqué esa mayor reactividad entre el antiveneno para escorpiones de Norteamérica y venenos de escorpiones de África del norte y los de antivenenos escorpiónicos de Sudamérica y venenos de escorpiones de África del sur. Posiblemente los péptidos contenidos en los venenos de estas especies pudiesen estar relacionados con la relación entre las especies

de Norteamérica y África del norte y entre las sudamericanas y las sudafricanas, que pudieron haber quedado separadas tras la separación de los continentes. En este aspecto, estudios realizados sobre las estructuras primarias de toxinas de *Tityus serrulatus* y otras de escorpiones de Norteamérica y del Norte de África mostraron que las toxinas de *T. serrulatus* no se relacionaban con las de los ejemplares del hemisferio Norte, sino que serían intermediarias entre las toxinas de estos escorpiones. Estos autores sostienen que sus datos son consistentes con la conexión terrestre entre Sudamérica y Sudáfrica el pasado (**Possani y col. 1985**). Esta hipótesis es congruente con los estudios de reactividad inmunoquímica arriba mencionados.

Los principales componentes tóxicos de estos venenos serían las neurotoxinas moduladoras de canales de Na⁺. Estas, como se mencionó, poseen alrededor de 70 aminoácidos y estructuras muy similares (**Becerril y col. 1997**). Sin embargo la alta especialización de estos péptidos para unirse a diferentes sitios de los distintos tipos de canales de Na⁺, que le permite al escorpión tener mayor posibilidad de paralizar a sus potenciales presas (**Possani y col. 1999 a y b, 2000**), es una gran desventaja a la hora de la preparación de los antídotos.

Estos componentes representan un bajo porcentaje del veneno, poseen bajo peso molecular y varios puentes disulfuro (**Delori y col. 1991; Devaux y Rochat 2002**) que pueden hacerlas menos eficientes al momento de su procesamiento para la presentación antigénica. Esto se debería a que las catepsinas de los macrófagos de algunas especies podrían ser poco eficaces en la hidrólisis de los puentes disulfuro para la presentación de los péptidos a los linfocitos B, como se ha estudiado con algunas neurotoxinas de Elápidos, de un peso molecular similar al de las neurotoxinas de Na⁺ de los escorpiones y con presencia de puentes disulfuro (**Chang y col. 1995; Maillère y col. 1995; Thai y col. 2004**).

Estos factores, hacen que la generación de anticuerpos neutralizantes no sea tan "fácil" como contra otras neurotoxinas, y en parte es uno de los factores que hace que la producción de antivenenos escorpiónicos sea trabajosa.

Sin embargo, merced a la aplicación de las proteínas recombinantes, se ha sugerido la potencial utilización de estos para la producción de antivenenos como en el caso de una neurotoxina de *T. serrulatus* (Mendes y col., 2008). Esto es algo que posiblemente facilite la producción de este tipo de antivenenos, en especial para aquellos venenos de escorpiones difíciles de obtener como en el caso de los *Tityus*. Actualmente se están utilizando para uso terapéutico antivenenos anti *Loxosceles* producidos con

esfingomielinasas recombinantes como inmunógenos (Olvera y col., 2006; De Almeida y col., 2008), una molécula bastante mayor que las neurotoxinas de escorpiones y de dificultosa expresión.

7- COMENTARIOS FINALES

El escorpionismo en la Argentina es una entidad patológica que ha cobrado importancia en los últimos años.

Históricamente se sabía de casos de envenenamiento por escorpiones, siendo el primero de ellos registrados el comunicado por Sancón en Corrientes en 1928 (Maury, 1979). Médicos del Noroeste del país relatan casos históricos graves y hasta fatales atribuidos a la picadura de escorpiones (comunicaciones personales al autor). Sin embargo, no fue sino hasta comienzos de la década de 1990, por la iniciativa del Prof. Urtubey, director del Instituto de Animales Venenosos de Santiago del Estero "Jorge W. Abalos" y su acuerdo con la Bioq. Liliana Segre, Jefa de Producción del ex Instituto Nacional de Microbiología "Dr. Carlos G. Malbrán", que se comenzó a pensar en la producción nacional de antiveneno y se comenzó con la misma.

Hasta ese momento, en dicha provincia se producían accidentes graves por estos arácnidos y no se disponía de tratamiento. Por iniciativa de las autoridades Sanitarias de Santiago del Estero se compraba al Instituto Butantan de San Pablo, Brasil, el "Soro Antiaracnídico" (el que era usado en los envenenamientos por estos accidentes.

La bibliografía sobre los aspectos médicos del escorpionismo, incluso sobe los aspectos biológicos de los *Tityus* de Argentina, eran muy escasos y recién en los últimos años se cuenta con más material, especialmente de los aspectos médico - toxicológicos. Entre la bibliografía que se puede mencionar que considera este problema sanitario es necesario mencionar el trabajo pionero de Martino y colaboradores (1979). Entre aquellos de quienes se dedicaron al estudio de este escorpión, a Maury, con una gran cantidad de material sobre los aspectos biológicos de *Tityus trivittatus* y otros *Tityus* (Maury 1969, 1970, 1974, 1978, 1986, 1997). Obviamente, no han sido los únicos que trataron este tema, pero si quienes más atención pusieron sobre él y los únicos referentes durante muchos años sobre escorpionismo.

Algunos investigadores ante el problema presente y ante la poca cantidad de material bibliográfico local, publicaron sus experiencias en varias revistas locales. Entre estos merecen citarse los trabajos de Tomassone (1994), Del Valle Luna y Luna (1997), Gordillo y col. (2000), Peirano y col. (2000), Evangelista y col. (2003 a y b), Piola y col. (2003, 2006), Piola (2004, 2007). Es de hacer notar que las publicaciones así como

las notificaciones por la picadura de estos (ver Capítulo 1.g), se elevaron tras la aparición de accidentes graves y muertes por la picadura de estos escorpiones

Con las comunicaciones de casos graves en las provincias hubo (y hay) gran alarma por la aparición de una "invasión" de escorpiones que se "volvieron venenosos". En este aspecto, aunque no se pueda afirmar con elementos sólidos que el veneno de estos se haya modificado o no, debido a la ausencia de datos pre-existentes, si se pudo verificar que al menos en el caso de la Ciudad de Buenos Aires, no hubo una "invasión" de escorpiones sino que los hallazgos comunicados de estos escorpiones tuvieron cierta influencia periodística (Salomón y de Roodt, 2002).

Tras el comienzo de la utilización de antiveneno, se pudieron obtener más datos sobre los envenenamientos a partir de las planillas que se devolvían con los envases vacíos, y esto permitió conocer más sobre las características epidemiológicas del escorpionismo (hasta ese momento por *T. trivittatus*). En el 2003 juntando informaciones de diferentes fuentes, se pudieron registrar 511 historias de picaduras por estos escorpiones (de Roodt y col., 2003). Por otro lado a partir del año 2002 con la mejora en el sistema de notificaciones por picadura o mordedura de animales venenosos, también se tuvo mejor idea a nivel nacional de los accidentes comunicados y no solamente aquellos tratados con antiveneno.

El lógico aumento de comunicaciones, además de los factores relacionados con la información y la "desinformación" periodística, sin lugar a dudas es una reacción lógica, considerando que el período 1993-1999 se registraron tres fatalidades por la picadura de escorpiones, mientras que en el período 2000-2006, se comunicaron 19 fatalidades comprobadas por picadura de escorpión (**Piola, 2006**). Este número comprende sólo las notificaciones de casos letales al Ministerio de Salud de la Nación, por lo que puede haber diferencias con el número total, dado que como en toda patología puede haber casos no comunicados a las autoridades en su momento, pero que fueron comunicados por los médicos tratantes o se llegó a la conclusión de la causa de muerte por escorpión tras registrar la muerte. Este incremento en las comunicaciones de accidentes se discute en el Capítulo 1-g.

El cuadro epidemiológico del escorpionismo se ha complicado ya que a *T. trivittatus* se la ha sumado *T. confluens*, el cual si bien se mencionaba como capaz de producir la muerte, no contaba con respaldo bibliográfico o técnico. Actualmente se conoce que a este escorpión pueden ser atribuidas cuatro muertes (una con

comprobación directa) y que su veneno tiene similitud al de *T. trivittatus* tanto en su potencia letal como en sus características toxicológicas e inmunológicas (**de Roodt y col., 2009**).

Sin embargo, a pesar de esta puesta en primer plano de los escorpiones en el escenario sanitario de Argentina, los estudios clínicos o de *status* epidemiológico (de Roodt y col., 2003; Saracco y col., 2006) o los referentes al estudio de este envenenamiento y del veneno siguen siendo escasos.

En referencia al veneno, el estudio de este (de Roodt y col., 2001) y las características de algunos de sus componentes (Coronas y col., 2003, 2007; Abdel-Mottaleb y col. 2006) se han comentado en capítulos anteriores.

El estudio de los venenos y de la fisiopatología de los envenenamientos es fundamental para entender los cuadros de envenenamientos en los humanos. La falta de datos ha hecho que gran cantidad de trabajos clínicos sobre escorpionismo en la Argentina se refieran a biblografía de África o Asia o México, hechos en base a envenenamientos provocados por escorpiones diferentes, con venenos diferentes y con tratamientos diferentes. Extrapolar datos de venenos de otros escorpiones y cuadros clínicos y fisiopatologías producidos por estos a lo que sucede en los envenenamientos por Tityus de Argentina, no es acertado, pero desafortunadamente muy común, lo que fácilmente se puede observar al analizar las bibliografías de muchas publicaciones. Un simple ejemplo que habla de las diferencias en venenos que se traducen en distintos tipos de cuadros de envenenamiento, es que los escorpiones del viejo mundo poseen mayoritariamente alfa-toxinas (Martin-Eucláire y col. 1992; Gordon y col. 2003) mientras que los sudamericanos mayormente poseen tanto esas como beta-toxinas. Estas últimas si bien actúan igualmente sobre el sistema nervioso autónomo, no lo hacen de manera similar a las alfa-toxinas lo que podría ser responsable de algunos aspectos clínicos diferentes entre los envenenamientos. Por ejemplo la pancreatitis observada en Sudamérica no es común en México, como uno de los ejemplos más evidentes.

El estudio del veneno de los *Tityus* en Argentina es escaso debido a la dificultad para la obtención de veneno. En el caso particular del INPB que es el productor del antiveneno, se prioriza obviamente la producción del mismo, por lo que todos los estudios que se realizan en ese centro se hacen con veneno excedente, no utilizado para los procesos de producción y control.

La obtención de ejemplares es dificultosa, la mantención de los mismos en cautividad dificil y además estos brindan poca cantidad de veneno por animal. Todo esto dificulta la producción y su estudio. El primer punto a veces se ve complicado ya que con la gran propaganda periodística en torno a las muertes, algunos grupos han comenzado a requerir escorpiones en diferentes ámbitos para distintos propósitos, lo que hace dificultosa la obtención de los mismos para el estudio por parte de nuestro laboratorio. Sólo considerando dos fuentes en que partes involucradas nos comunicaron el hecho, hace unos tres años, más de 400 escorpiones capturados en una campaña para "el Malbrán" fueron donados o cedidos para investigaciones, desconocidas por nosotros y hasta este momento, no publicadas o comunicadas en reuniones científicas. El interés en la investigación de estos animales es algo muy sano dado lo poco que sabemos de ellos y de sus venenos, pero dificulta la obtención de los materiales necesarios para producir los antivenenos y los estudios de variaciones toxicológicas regionales para evaluar los antivenenos y mejorarlos.

En este aspecto, se debería tender a profundizar los estudios de caracterización de las toxinas para canales de Na⁺ de *T. trivittatus*. Ya se posee bastante información sobre la Tt gamma-*like*, y su gen se ha clonado (**Coronas y col., 2007**). El paso siguiente sería intentar la expresión de esta y probar su utilidad como inmunógeno. Datos obtenidos por otros investigadores sobre el potencial uso de péptidos como inmunógenos para la generación de anticuerpos neutralizantes, hacen que este sea un tema sobre el que debería centrarse la atención. Si esto así fuese, la producción de antiveneno se facilitaría enormemente y se podría ampliar la cobertura nacional de este tipo de antídoto.

Independientemente del conocimiento del veneno y sus componentes, del de la fisiopatología del envenenamiento o de la producción del antiveneno, deben tomarse medidas en lo referente a la producción de un antiveneno de potencia y calidad que pueda cubrir todo el país, y esto ir acompañado por fuertes medidas en educación de la población y entrenamiento del personal de salud ante esta problemática.

El envenenamiento por escorpiones es una patología aguda que requiere una intervención rápida para evitar el envenenamiento sistémico por los fenómenos fisiopatológicos ya ampliamente descriptos, dado que una vez instalado el edema

pulmonar o el síndrome de *distress* respiratorio o la falla cardíaca, es difícil revertir el cuadro.

La población debe ser instruida en la necesidad de la rápida consulta al centro sanitario. El centro sanitario debe ser capacitado para la rápida intervención, la evaluación del cuadro y la eventual aplicación del antiveneno e internación en la unidad de Terapia Intensiva.

Respecto a la aplicación del antiveneno, en lo referente al productor, este debe esforzarse por producir lotes homogéneos en cuanto a potencia y aumentar la disponibilidad y la cobertura del mismo. Respecto a lo primero, por todos los problemas citados en cuanto a la producción, los lotes no suelen ser homogéneos en cuanto a potencia, variando esta mucho y obligando a los médicos a calcular la cantidad de dosis de los diferentes lotes.

En general, dado que no es posible comparar las dosificaciones de los otros antivenenos escorpiónicos americanos (**Tabla 8.1**), por motivos técnicos (independientemente de tratarse de diferentes venenos) como la utilización de distintos tipos de ensayos para valorar su potencia o para informarla, y por falta de ensayos clínicos de estos en todos los países productores, se tiende empíricamente a sugerir la dosificación en base a datos históricos, o extrapolaciones de otros ensayos clínicos o experiencias, o a una mezcla de todos estos.

Lo que se suele hacer en Argentina, es sugerir aplicar una cantidad de antiveneno suficiente como para neutralizar 150 DL₅₀ de veneno en casos moderados y más de 300 DL₅₀ en los casos graves. Estos valores se basan en las recomendaciones de la Farmacopea Mexicana. Si bien esta se refiere al veneno de *Centruroides*, expresa su potencia en DL₅₀, lo que facilita las comparaciones y extrapolaciones. Otro elemento a favor de utilizar esta dosificación es que el control en México como en Argentina se hace en ratones mediante experimentos de pre-incubación. El antiveneno venezolano producido por la Universidad Central de Venezuela expresa la neutralización en mg de veneno y los sueros de Brasil (hasta la fecha de la escritura de esta tesis) expresan los resultados en DMM (dosis mortales mínimas) neutralizadas en cobayos (*Cavia porcellus*). Si se utilizase algún anti *Tityus* venezolano o brasileño, posiblemente usando los volúmenes recomendados se lograría un buen efecto terapéutico, sin embargo no es lícito extrapolar el volumen de esos antivenenos al dosificar el argentino, dado que las

referencias para aquellos son para la neutralización de otros venenos, utilizan técnicas diferentes y no miden la potencia de la misma manera ni en las mismas especies animales. Obviamente mucho menos lícito es extrapolar el número de ampollas recomendado por los prospectos al número de ampollas del antiveneno local.

Tabla 7.1. Características de varios antivenenos antiescorpiónicos americanos.

Antiveneno	Antiescorpión	Soro Antiescorpiónico	Alacramyn	Suero Antiescorpiónico
País de procedencia	Argentina	Brasil	México	Venezuela
Laboratorio productor	INPB-ANLIS "Dr. Carlos G. Malbrán"	Instituto Butantan	Insituto Bioclon	Universidad Central de Venezuela
Veneno usado como inmunógeno	Tityus trivittatus	Tityus serrulatus	Pool de Centruroides spp	Tityus discrepans.
Especie en la que se prueba	Ratones	Cobayos	Ratones	Ratones
Potencia neutralizante expresada en	DL_{50}/ml	DMM	$DL_{50}/vial$	mg
Potencia por vial	X DL50 neutralizadas / ml (*)	Más de 7.5 DMM/ampolla	$150~DL_{50}/vial$	1 mg de veneno/vial
Presentación	Frasco ampolla de 2 ml	Ampolla de 5 ml	Frasco ampolla liofilizado para 5 ml	Ampolla de 5 ml

Tabla 7.1. Características de varios antivenenos antiescorpiónicos americanos. Todos estos antivenenos son la fracción F(ab')2 de inmunoglobulinas equinas. Se indican en cada caso los elementos necesarios para poder evaluar las diferencias en cuanto a la determinación de la potencia neutralizante de cada uno de ellos. (*) Hasta el momento de escritura de esta, la potencia de cada lote era variable.

Estas grandes diferencias en cuanto a la determinación de potencia hacen que no sea lícito extrapolar otras potencias o dosificaciones. Sería conveniente realizar ensayos clínicos para definir la dosificación, sin embargo por lo escaso de los casos y del material necesario para producir el antiveneno, esto sería algo muy trabajoso y en las condiciones actuales muy poco viable. No obstante debería intentarse cuando se den las condiciones para esto.

En referencia al tratamiento médico, éste debería estandarizarse mediante normas programáticas y brindarse a todos quienes deban tratar esta patología. En las diferentes facultades de medicina o de veterinaria del país, si se trata el tema de envenenamiento por animales ponzoñosos, en general se limita a ofidios. Y el tratamiento de los accidentes ofídicos, aún los que presentan cuadros neurotóxicos, es muy diferente al del envenenamiento escorpiónico.

En los casos de envenenamiento escorpiónico, la velocidad en cuanto a la aplicación del antiveneno, en los casos que lo requiera. y la internación del paciente en la unidad de terapia intensiva en los casos severos, son prioritarios por el complicado cuadro fisiopatológico que se puede instalar.

Aunque en todos los casos de aplicación de antivenenos para uso terapéutico potencialmente pueden producirse reacciones adversas inmediatas o tardías (para una revisión ver de Roodt y col. 2004), en los casos de envenenamiento por escorpiones, la aparición de estas es rara, a diferencia de lo que sucede en los accidentes ofídicos. Las reacciones inmediatas, tanto la anafílaxia como la anafílaxia no mediada por IgE (reacciones anafílactoideas) si se producen son mínimas. y en gran parte neutralizadas por los altos niveles de catecolaminas que se generan en estos envenenamientos (Amaral y col. 1994; Lo Vecchio y col., 1999). Esto lamentablemente no es enseñado ni en el pregrado ni difundido a quienes tendrían que tratar estos accidentes. Esto, en algunas ocasiones, fue motivo que un antiveneno que debería aplicarse rápidamente se haya aplicado en su dosis total (4 ml en para considerar un caso real) en dos horas, ya que es el tiempo recomendado en alguna bibliografía para los accidentes ofídicos. Tiempo totalmente inadecuado para un accidente escorpiónico en dónde la dosis debería aplicarse rápidamente, y si fuese necesario en bolo dada la rápida fijación de las toxinas de estos.

De la misma manera las reacciones adversas tardías (reacciones de Arthus, hipersensibilidad Tipo III) serían despreciables o al menos muchísimo menores que el caso de los accidentes ofídicos. Esto es debido a que en un caso grave se podrían estar aplicando 4-8 ampollas de antiveneno, lo que significan 8 – 16 ml de antiveneno, lo que difícilmente pudiese provocar la misma reacción que se daría por un caso grave de ofidismo en que se estarían aplicando 80 – 120 ml de antiveneno. Obviamente la carga proteica endovenosa es mucho mayor en el segundo, y los complejos inmunes formados será mayor en el segundo caso que el de un tratamiento por envenenamiento escorpiónico, lo que aumenta tanto la posibilidad de importantes reacciones del tipo Arthus ("Enfermedad del Suero") cómo de anafilaxia no mediada por IgE ("reacciones anafilactoideas").

En México en el Hospital de la Cruz Roja en León Guanajuato, por noche de verano atienden un piso de 15-20 pacientes picados por alacrán. La baja presencia de

reacciones con los antivenenos (poseen una buena purificación y muy baja carga proteica) en estos casos hace que tras comprobar la necesidad de antiveneno, este se aplica por la vía endovenosa, se deja al paciente en control un par de horas y se lo deriva al domicilio (Dr. Alfredo Luis Chávez-Haro, comunicación personal). La experiencia de ellos y el tipo de producto que utilizan hace que esta conducta sea adoptada con ciertas variaciones por la mayoría de los tratantes de esos accidentes en ese país (250.000 picaduras por año). En nuestro país, esto no sería recomendado, pero sí habla a favor de la necesidad de la rápida aplicación del antiveneno tras la picadura y la rápida infusión de éste en el paciente.

El veneno de *T. trivittatus* de Argentina poseería variaciones bioquímicas en las diferentes regiones pero la reactividad inmunológica cruzada entre estos sería suficiente como para que los antivenenos que se producen regularmente con veneno de alguna determinada región sean de utilidad para neutralizar el veneno de escorpiones de diferentes regiones.

Finalmente, existe escasa información sobre la clínica y la epidemiología de los envenenamientos por *Tityus* en Argentina así como de la bioquímica y características tóxicas de su veneno. Es necesario que se ahonden los estudios de estos tópicos para tener elementos más sólidos para poder enfrentar la problemática del escorpionismo que está poniéndose en un primer plano sanitario en la Argentina.

Algunos de los estudios realizados y aquí expuestos pueden brindar inicialmente alguna posible vía para mejorar algunos puntos problemáticos (como la producción de antivenenos). Otros brindan alguna base hasta ahora inexistente en Argentina, para poder encarar ciertos aspectos de este problema sanitario con una vista amplia y ahondar, mejorar o modificar lo aquí expuesto, como en lo referente a la epidemiología y los aspectos bioquímicos, inmunológicos y toxicológicos de estos venenos.

Los estudios encarados en esta Tesis entonces, ayudarán a los interesados en estos temas a contar con una base para ampliar y mejorar el estudio de los diferentes puntos aquí tratados. Todo el conocimiento que se logre sobre los escorpiones de importancia médica en la Argentina, su veneno y los aspectos clínicos del envenenamiento, contribuirán a mejorar la atención de los pacientes y la prevención de accidentes. Además ayudarán a que la convivencia entre humanos y escorpiones no sea causa de miedo o alarma y mucho menos de muerte de niños o adultos.

8- CONCLUSIONES

El envenenamiento por escorpiones en la Argentina en los últimos años ha provocado una serie de óbitos en niños, lo que ha puesto en primer lugar a éste en el escenario de las patologías por animales ponzoñosos, en cuanto a notificaciones de accidentes, aunque la mayoría de estos no requieran tratamiento específico.

Los datos sobre la clínica de los envenenamientos son escasos, si bien en los últimos años se están generando aportes en este campo. Los estudios sobre el veneno de escorpiones son muy escasos, posiblemente a causa de la dificultad en obtener ejemplares. Adicionalmente los *Tityus* son escorpiones difíciles de mantener en cautividad y la cantidad de veneno obtenida a partir de ellos es muy poca. Esto dificulta no solo los estudios sino la producción del antiveneno específico.

Los venenos de Buthidae poseen numerosas toxinas de las cuales las más estudiadas son aquellas que actúan sobre los canales de Na⁺ y de K⁺, siendo las primeras aquellas relacionadas con los procesos de envenenamiento en mamíferos. Los estudios cromatográficos realizados en venenos de *T. trivittatus* pusieron de manifiesto que la fracción de bajo peso molecular (componentes inferiores a los 10 kDa) es la responsable de la letalidad en animales de experimentación. Los animales de experimentación inoculados con estos venenos o las fracciones, presentan una signología neurotóxica con alto compromiso del sistema nervioso autónomo, congruente con los datos disponibles sobre envenenamientos por escorpiones. Las lesiones histopatológicas en los órganos muestran lesiones similares a las descriptas en los envenenamientos por otros Buthidae, siendo destacables las lesiones en pulmones, compatibles con un síndrome de distress respiratorio, y las observadas en miocardio y páncreas.

Del veneno de *T. trivittatus* se han aislado tres toxinas, dos bloqueadoras de canales de K⁺. Una de ellas la Tt_*Butan*-Ts es similar a una del veneno de *T. serrulatus*, que tiene como característica diferencial respecto al resto de las toxinas de K⁺, que posee cuatro puentes disufuro en lugar de los 3 típicos de estas toxinas. Otra de las toxinas aisladas

pertenece a un nuevo grupo de toxinas de K⁺, y se denominó Tt28. Esta actúa sobre canales de K⁺ presentes en los linfocitos y podría tener uso como inmumodulador. Recientemente se clonó y secuenció una toxina denominada Tt-gammatoxin-like (similar a la toxina gamma de *T. serrulatus*) que es una beta toxina moduladora de canales de Na⁺, y sería una de las mayores responsables de la toxicidad de este veneno. Hasta el presente ésta es la única toxina de importancia médica para mamíferos aislada de este veneno.

La toxicidad del veneno de *T. trivittatus* varía en las diferentes regiones y en algunas como en la ciudad de Buenos Aires, no posee toxicidad importante para mamíferos. Sin embargo, parecería que esta puede variar, dado que en otras ciudades en las que los accidentes por escorpiones no eran infrecuentes y no pasaban de causar signos locales, comenzaron a producirse accidentes graves y hasta óbitos por la picadura de estos escorpiones. Esto se observó en las ciudades de Rosario, Santa Fe, Paraná, San Juan, La Rioja, Catamarca y Tucumán.

En la última década aumentó el número de óbitos por escorpionismo y consecuentemente la notificación de accidentes por estos animales que llegó a superar las notificaciones por mordeduras de ofidios, si bien, menos del 10% de los casos habrían requerido tratamiento. En lo referente a escorpionismo, se confirmó la toxicidad para humanos del veneno de *T. confluens*, al cual se le atribuyen varios óbitos de niños en el Norte del país.

Los venenos poseen una importante reactividad inmunoquímica tanto frente al antiveneno específico como a aquellos producidos con veneno de *T. serrulatus* (de Brasil). No se observó una buena reactividad entre el veneno u homogenato de télsones de *T. trivittatus* o *T. confluens* frente a antivenenos anti-*Centruroides*. Los experimentos de neutralización mostraron que el antiveneno producido con veneno proveniente de una provincia es capaz de neutralizar el veneno de escorpiones de otras provincias. Respecto a la reactividad inmunológica entre venenos de Buthidae de África del Norte o Sudáfrica y antivenenos frente a los venenos de Buthidae de Sudamérica (*Tityus trivittatus*) y Norteamérica (*Centruroides* spp.), se vio mayor reactividad entre los venenos y antivenenos de Sudamérica y Sudáfrica y entre los de Norteamérica y el Norte de África. El

antiveneno anti-Centruroides no fue efectivo para la neutralización del veneno de T. trivittatus.

Considerando los datos disponibles en la bibliografía y los obtenidos en este estudio se puede concluir que:

El envenenamiento por *Tityus* es una patología que parecería ir incrementándose en los últimos años y que requiere la atención de los sistemas sanitarios en los lugares en que pueden encontrarse escorpiones de este género.

El veneno de éstos varía tanto bioquímicamente como en su capacidad tóxica en las diferentes regiones. Por este motivo es necesario estudiar regularmente estas variaciones para detectar tempranamente los cambios que pudiesen producirse y alertar a las autoridades sanitarias.

A pesar de la variabilidad entre los diferentes venenos, la alta reactividad inmunológica entre los de las diferentes regiones facilita la producción de antivenenos, permitiendo utilizar material de las diferentes provincias según la disponibilidad.

El estudio de estos venenos y sus toxinas independientemente del aporte científico que brinden al campo de la toxinología, es de importancia a nivel sanitario dado que el clonaje y expresión de sus neurotoxinas podrían ayudar no sólo al mejor conocimiento de la fisiopatología del envenenamiento, sino también a la obtención de anticuerpos o proteínas recombinantes neutralizantes de las mismas. Tanto las neurotoxinas recombinantes como otras proteínas recombinantes que las contengan y aumenten su inmunogenicidad, podrían ser utilizadas como herramienta terapéutica para tratar este tipo de envenenamientos. Así se podría, independizar la producción de antivenenos de la captura de escorpiones, restringiendo la última solamente para la obtención de veneno para los controles finales de los lotes producidos.

9- RESUMEN

El envenenamiento por escorpiones es una patología conocida en Argentina dese hace muchos años pero solo recientemente ha tomado relevancia debido a la muerte de varios niños picados por alacranes del género Tityus. La información sobre escorpiones de importancia médica en la Argentina así como aquella sobre escorpionismo, es escasa y fragmentada y aquella sobre las características de sus venenos, inexistente. Por esos motivos se decidió reunir y estudiar las características bioquímicas, inmunológicas y tóxicas del veneno de Tityus trivittatus, el escorpión de mayor importancia médica en la Argentina y las características tóxicas del veneno de Tityus confluens un escorpión que en los últimos años fue responsable de óbitos en el país. Se abordaron además aspectos epidemiológicos relacionados a los accidentes por Tityus trivittus. Fueron analizados temas referidos a la biología de estos arácnidos así como de su mantenimiento en cautividad y la obtención y conservación de su veneno. El estudio de su veneno se realizó a partir de homogenatos de telsones y sobre veneno obtenido por estimulación eléctrica, En todos los casos,, se observaron patrones cromatográficos (C18, HPLC) diferentes aún en muestras provenientes de una misma provincia. Del mismo modo, la toxicidad fue distinta en las diferentes muestras (provenientes de las provincias de Santa Fe, entre Ríos, la Rioja, Catamarca, Córdoba, Santiago del Estero y Buenos Aires,), aún en aquellas provenientes de poblaciones de escorpiones de regiones similares, inclusive de la misma provincia. Las muestras de la Ciudad de Buenos Aries fueran las únicas que no presentaron toxicidad destacable, en concordancia a la escasa cantidad de envenenamientos que comunica dicha ciudad. La toxicidad se encontró solamente en las fracciones cromatográficas (Superdex FPLC) de bajo peso molecular en concordancia con el conocido peso molecular de las neurotoxinas tóxicas para mamíferos que poseen los venenos de Tityus. Los hallazgos patológicos macroscópicos y microscópicos producidos por el envenenamiento experimental se mostraron similares en los envenenamientos experimentales por los venenos de T. trivittatus y de T. confluens. En todos los casos se hallaron lesiones pulmonares con congestión, edema y abundante cantidad de material fibrinohemático en los

espacios alveolares. Las lesiones en miocardio también fueron observadas en todos los casos, y las lesiones pancreáticas fueron vistas en la mayoría de los casos. Fue evidente la acción de los venenos sobre el sistema nervioso autónomo. En general las lesiones fueron similares a las observadas en los envenenamientos experimentales por otros Buthidae no americanos, las que son descriptas. En referencia a la composición del veneno de Tityus trivittatus se describe el aislamiento y caracterización de dos toxinas bloqueadoras de canales de K⁺, la Tt-butantoxin (TTBUT-TOXIN, KTX 12.2), similar a la Butantoxin de Tityus serrulatus, y la Tt28, toxina perteneciente a una nueva familia de toxinas de canales de K⁺ (TT28, alfa-KTX 20.1). También se describe el clonado y secuenciación de una toxina gamma-símil, toxin, con más del 90% de identidad con la toxina gamma de T. serrulatus (TS 1) por lo que se la denominó Ttgamma-like toxin. Este hallazgo explicaría la conocida utilidad del antiveneno anti-T. serrulatus en los envenenamientos por trivittatus. Los estudios inmunoquímicos (inmunodifusión, ELISA y seroneutralización) mostraron una alta reactividad entre los venenos provenientes de diferentes provincias tanto frente al antiveneno específico anti-Tityus trivittatus, como frente a un antiveneno antiaracnídico polivalente y un específico anti Tityus serrulatus, como sí también se observó reactividad con un antiveneno anti-Centruroides, pero de menor grado. La protección conferida por el antivenno de uso terapéutico producido por el Ministerio de Salud mostró ser eficiente frente al veneno de Tityus trivittatus de las diferentes provincias, independientemente que los mismos hayan sido utilizados como inmunógenos para su obtención, así como sobre el veneno de Tityus confluens. La reactividad inmunoquímica frente a otros venenos ecorpiónicos africanos fue estudiada, encontrándose mayor reactividad entre los venenos de escorpiones del hemisferio sur (Tityus trivittatus, Parabuthus transvaalicus y Parabuthus granulatus) frente al Anti Tityus trivittatus (escorpión sudamericano) que frente al antiveneno anti-Centruroides (escorpión norteamericano), siendo este último antiveneno más reactivo frente a los venenos de escorpiones del hemisferio norte (Leiurus quinquestriatus, Buthus occitanus y Androctonus autralis).

La signología registrada en accidentes por *Tityus trivittatus* en Argentina según la escasa bibliografía disponible y el estudio de fichas clínicas de pacientes tratados (1993-1999) muestra gran similitud con los cuadros de envenenamiento producidos por otros venenos

escorpiónicos, con una signología local importante, representada por dolor agudo de aparición inmediata y compromiso del sistema nervioso autónomo. Estudios epidemiológicos muestran un incremento importante de los casos graves producidos por escorpiones de la Argentina. Durante el período 1993-1999 se comunicaron 3 casos mortales por la picadura de escorpiones, mientras que en el período 2000-2006, se registraron 19 casos mortales, lo que indica un aumento mayor a 6 veces de muertes por escorpionismo. Es importante destacar que en provincias en las que el accidente escorpiónico era común y no causaba más que signología local, comenzaron a presentarse cuadros de envenenamientos graves y óbitos, como el caso de las provincias de Santa Fe, Entre Ríos, Catamarca, Jujuy, Tucumán, La Rioja y San Juan. Inclusive en diciembre de 2009, se produjo un posible caso moderado en la Ciudad de Buenos Aires, si bien no se pudo obtener el ejemplar para su ratificación. Estos hechos indican la necesidad de realizar un monitoreo de la toxicidad del veneno de estos artrópodos dado que se ha visto que la misma puede variar. Los tratamientos para los envenenamientos y los accidentes comunicados a las autoridades sanitarias se incrementaron de forma importante en los últimos años, pero manteniendo una relación regular entre los casos tratados y las notificaciones de picaduras, que estaría en el orden de 9-10% de casos totales comunicados. Se analiza la situación actual de la disponibilidad de antivenenos y la falta de estudios de campo sobre el tratamiento de los envenenamientos y su correcta dosificación. Se discute la posibilidad de mejorar en los aspectos referentes a la producción y aplicación de antivenenos, mediante la racionalización del empleo del veneno y la obtención de péptidos inmunogénicos mediante tecnologías recombinantes de acuerdo a lo ya realizado con otros antivenenos de arácnidos. Se plantea además la necesidad de enfrentar al escorpionismo en conjunto, siendo los pilares para esto la prevención y educación de la población, el adiestramiento del personal de salud, la adecuada asistencia médica y la disponibilidad del antiveneno específico para los casos que lo requiriesen.

10- BIBLIOGRAFÍA

- Abdel-Mottaleb Y., Coronas F.V., de Roodt A.R., Possani L.D., Tytgat J. (2006). A novel toxin from the venom of the scorpion *Tityus trivittatus*, is the first member of a new α-KTX subfamily. *FEBS Letters* 580(2): 592-596.
- Abdel-Mottaleb Y., Corzo G., Martin-Euclaire M.F., Satake H., Céard B., Peigneur S., Nambaru P., Bougis P.E., Possani L.D., Tytgat J. (2008). A common "hot spot" confers hERG blockade activity to alpha-scorpion toxins affecting K+ channels. Biochem Pharmacol. Biochem Pharmacol 76(6): 805-815.
- **Acosta L.E. (2005).** Scorpiones- Escorpiones o alacranes: 21-27pp. En: Salomon O.D. (Ed) *Artrópodos de Interés Médico en la Argentina*. Fundación Mundo Sano Eds., ISBN 987-20421-0-1, Buenos Aires, 2005, 120 pp.
- Acosta L.E. & Maury E.A. (1979). Scorpiones. En: Biodiversidad de Artrópodos argentinos. Una perspectiva biotaxonómica. Morrone J.J. y Coscaron S. (Eds), pp 545-549. Ed. Sur, La Plata.
- Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Miller W., Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucl. Acids Res.* 25: 3389–3402.
- Amaral C. F. S., Barbosa A. J. A., Leite V. H. R., Tafuri W. L., Rezende N. A. (1994a). Scorpion sting-induced pulmonary oedema: evidence of increased alveolocapillary membrane permeability. *Toxicon* 32: 999-1003.
- Amaral C.F., Dias M.B., Campolina D., Proietti F.A., de Rezende N.A. (1994b). Children with adrenergic manifestations of envenomation after *Tityus serrulatus* scorpion sting are protected from early anaphylactic antivenom reactions. *Toxicon* 32(2):211-215.
- **Amaral C. F. S. y Rezende N. A. (1997).** Both cardiogenic and non-cardiogenic factors are involved in the pathogenesis of pulmonary oedema after scorpion envenoming, *Toxicon* 35: 997-998.
- Andrade M.V., Lisboa F.A., Portugal A.L., Arantes R.M., Cunha-Melo J.R. (2006). Scorpion venom increases mRNA expression of lung cytokines. *Comp Biochem Physiol A Mol Integr Physiol* 146, 581-587.
- **Azevedo A.D., Silva A.B., Cunha-Melo J.R., Freire-Maia L. (1983).** Cardiovascular and respiratory effects induced by a purified scorpion toxin (tityustoxin) in unanesthetized rats. *Toxicon* 21: 753-759, 1983.

- Bahloul M., Kallel H., Rekik N., Ben Hamida C., Chelly H., Bouaziz M. (2005). Cardiovascular dysfunction following severe scorpion envenomation. Mechanisms and physiopathology. *Presse Med* 34, 115-120.
- **Bancrof, J.D. & Stevens A. (1990).** Theory and Practice of Histological Techniques, third ed. Churchill Livingstone, Edinburgh.
- Barretto Cicarelli, R.M.; Siles Villarroel, M.; Zelante, F. (1983/1984b). Avalicao da actividade toxica do veneno de *Loxosceles gaucho* em termos de DL₅₀ e titulacáo do antiveneno em camundongos. *Mem. Inst. Butantan* 47/48: 45-53.
- **Bartholomew C.(1970).** Acute Scorpion Pancreatitis in Trinidad. *Br Med J.* 1(5697): 666–668.
- Bartholomew C., Murphy J.J., McGeeney K.F., Fitzgerald O. (1977). Exocrine pancreatic response to the venom of the scorpion, *Tityus trinitatis*. *Gut* 18(8):623-5.
- Batista C.V.F., Gómez-Lagunas F., Lucas S., Possani L.D. (2000). Tc1, from *Tityus cambridgei*, is the first member of a new subfamily of scorpion toxin that blocks Kþ-channels. *FEBS Lett* 486: 117–120.
- Batista C.V.F., Zamudio F.Z., Lucas S., Fox J.W., Frau A., Prestipino G., Possani L.D. (2002). Scorpion toxins from *Tityus cambridgei* that affect Na+-channels. *Toxicon* 40: 557–562.
- Becerril B., Corona M., Coronas F.I.V., Zamudio F.Z., Calderon-Aranda E.S., Fletcher P.L. Jr., Martin B.M., Possani L.D. (1996). Toxic peptides and genes encoding gamma toxin of the Brazilian scorpions *Tityus bahiensis* and *Tityus stigmurus*. *Biochem. J. (Great Br.)* 313: 753–760.
- **Becerril B., Marangoni S., Possani L.D. (1997).** Toxins and Genes isolated from corpions of the genus *Tityus. Toxicon* 35: 821-835.
- **Bradford M.M.** (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72: 248-257.
- Brazón J., D'Suze G., D'Errico M.L., Arocha-Piñango C.L., Guerrero B. (2008a). Discreplasminin, a plasmin inhibitor isolated from *Tityus discrepans* scorpion venom. *Arch Toxicol*. En prensa.
- Brazón J., Guerrero B., Arocha-Piñango C.L., Sevcik C., D'Suze G. (2008b). Effect of *Tityus discrepans* scorpion venom on global coagulation test. Preliminary studies. *Invest Clin.* 49(1):49-58.
- **Bucherl, W. (1971).** Classification, biology and venom extraction of scorpions. En: Bucherl, W., Buckley, E. (Eds.), *Venomous Animals and their Venoms. Venomous Invertebrates*, vol. III. Academic Press, New York, pp. 317–347.

- Calderon Aranda E.S., Selisko B., York E.J., Gurrola G.B., Stewart J.M., Possani L.D. (1999). Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion *Centruroides noxius*, using discontinuous synthetic peptides. *Eur J Biochem* 264: 746-755.
- **Cándido D. & Lucas S. (2004).** Maintenance of scorpions of the Genus *Tityus* Koch (Scorpiones, Buthidae) for venom obtention at Instituto Butantan, Sao Paulo, Brazil. *Jorunal of Venomous Animals and Toxins including Tropical Diseases* 10(1): 86-97.
- Castelvetri S. & Peretti A.V. (1999). Receptividad sexual y presencia de Tapón Genital en hembras de *Bothriurus bonariensis* (C. L. Koch) (Scorpiones, Bothriuridae). Revue *Arachnologique* 13 (2): 15-23. Francia.
- Centro de Zoología Aplicada. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. (1933). Escorpiones Peligrosos de Córdoba: Aspectos Biológicos y Clínicos. Ed. Centro de Zoología Aplicada. Córdoba. 6pp.
- Coronas F.E., de Roodt A.R., Olamendi Portugal T., Zamudio F.Z., Batista C.B.F., Gómez Lagunas F., Posani L.D. (2003). Disulfide bridges and blockage of Shaker B K⁺ channels by another butantoxin peptide purified from the Argentinean scorpion *Tityus trivittatus*. *Toxicon* 41(2):173-179.
- Coronas F.V., Diego-García E., Zamudio F., de Roodt A.R., Restano-Cassulini R., Possani L.D. (2007). Cloning and Peptide sequencing of a gamma-like toxin from the Argentinian scorpion *Tityus trivittatus*. IX Congreso Panamericano de la Sociedad Internacional de Toxinología. Juriquilla, Querétaro, México. 21 al 25 de Octubre de 2007. Libo de Resúmenes.
- Correa M.M., Sampaio S.V., López R.A., Mancuso L.C., Cunha O.A.B., Franco J.J., Giglio J.R. (1997). Biochemical and histopatological alterations induced in rats by *Tityus serrulatus* scorpion venom and its major neurotoxin Tytiustoxin-1. *Toxicon* 35: 1053-1067.
- Cunha-Melo J.R., Almeida A.P. Gonzaga H.M.S., Gomez M.V., Freire-Maia L. (1987). Effect of scorpion toxin on gastric histamine and acetylcholine content in the rat. Brazilian *J. Med. Biol. Res.* 20: 393-401.
- Cupo P., Jurca M., Azevedo-Marques M.M., Oliveira J.S.M., Hering S.E. (1994). Severe scorpion envenomation in Brazil. Clinical, laboratory and anatomopathological aspects. *Rev Inst Med Trop Sao Paulo* 36(1): 67-76.
- Cupo P., Azevedo-Marquez M., Hering S.E. (2003). Escorpionismo. In Animais Peconhentos no Brasil. Biología, Clínica e Terapeutica dos Acidentes. Costa Cardoso J.L., Siqueira Franca F.O., Fan Hui Wen, Sant'Ana Málaque C.M., Haddad V. Jr. Eds. Sarvier Fapesp, Sao Paulo, pp. 198-208.

- Chandy G., K., Wulff H., Beeton C., Pennington M., Gutman G.A., Cahalan M.D. (2004). K⁺ channels as targets for specific immunomodulation. *Trends Pharmacol. Sci.* 25 (5): 280–228.
- **Chang LS, Lin J, Chang CC.** (1995). Evidence showing a different repertoire of antibodies against unfolded cobrotoxin in anticobrotoxin and anti-reduced and S-carboxymethylated cobrotoxin antisera. *Biochem Mol Biol Int* 35(4):733-738.
- Chávez-Haro A.L. (2007). En los territorios de scorpio. Experiencias y recuerdos de un alacranólogo. Editado por Lab. Silanes Inst. Bioclón, México DF.
- Chávez-Olórtegui C., Fonseca S.C.G., Campolina D., Amaral C.F.S., Diniz C.R. (1994). ELISA for the detection of toxic antigens in experimental and clinical envenoming by *Tityus serrulatus* scorpion venom. *Toxicon* 32: 1649-1656.
- Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G., Thompson J.D. (2003). Multiple sequence alignment with the Clustal series of programs. *Nucl. Acids Res.* 31(13): 3497–3500.
- **Daisley H., Alexander D., Pitt-Miller P. (1999).** Acute myocarditis following *Tityus trinitatis* envenoming: morphological and patophysiological characteristics. *Toxicon* 37: 1159-165.
- Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Meideros, C.L., Rowan, E.G., Harvey, A.L. y Meénez, A. (1997). On the convergent evolution of animal toxins: conservation of a dyad of functional residues in potassium channel-blocking toxins with unrelated structures. J. Biol. Chem. 272: 4302–4309.
- **Dehesa-Dávila M., Possani L.D. (1994).** Scorpionism and serotherapy in Mexico *Toxicon* 32(9):1015-1018.
- de Almeida D.M., Fernandes-Pedrosa M. de F., de Andrade R.M., Marcelino J.R., Gondo-Higashi H., de Azevedo I. de L., Ho P.L., van den Berg C., Tambourgi D.V. (2008). A new anti-loxoscelic serum produced against recombinant sphingomyelinase D: results of preclinical trials. *Am J Trop Med Hyg* 79(3):463-470.
- **Delepierre M., Prochnicka-Chalufour A., Boisbouvier J., Possani L.D. (1999).** Pi7, an orphan peptide isolated from the scorpion *Pandinus imperator*: 1N-NMR analysis using a nano-NMR probe. *Biochemistry* 38: 16756–16765.
- **Delori P., Van Rietschoten J., Rochat H. (1981).** Scorpion venoms and neurotoxins: an immunological study. *Toxicon* 19(3): 393-407.
- **Del Valle Luna M.G. y Luna M. (1997).** Escorpionismo por *Tityus trivittatus. Arch. Arg. Pediatr.* 95: 406-412.

- De Rezende N.A., Borges Dias M., Campolina D., Chávez-Olórtegui C., Amaral C.F.S. (1995). Standarization of an enzyme linked immunosorbent assay (ELISA) for detecting circulating toxic venom antigens in patients stung by the scorpion *Tityus serrulatus. Rev Inst Med Trop Sao Paulo* 37(1): 71-74.
- **De Rezende N.A., Chávez-Olórtegui C., Amaral C.F.S. (1996).** Is the severity of *Tityus serrulatus* scorpion envenoming related to plasma venom concentrations? *Toxicon* 34(7): 820-823.
- **de Roodt A.R. (2002).** Estudio Inmunobiológico del veneno de serpientes de importancia sanitaria de la Argentina. *Tesis Doctoral*, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires.
- de Roodt A.R., Beltramino J.C., Reati G.J., Amoroso M., Vucharchuc M., Tomassone R., Manzanelli V.M., Laskowicz R.D., Mendicino R. (2005). Toxicity of telsons of *Tityus trivittatus* from different regions of Argentina. *Acta Toxicol Argent* 13(Supl.): 117.
- de Roodt A.R., Coronas F.I.V., Lago N., Gonzalez M.E., Laskowicz R.D., Beltramino J.C., Saavedra S., López R.A., Reati G., Vucharchuc M.G., Bazán E., Varni L., Salomon O.D., Possani L.D. (2009b). General, biochemical and immunological characterization of the venom from the scorpion *Tityus trivittatus* of Argentina. Aceptado para publicación en *Toxicon*. En Prensa.
- de Roodt A.R., García S.I., Gómez C.M., Estévez J., Alagón A., Gould E.G., Paniagua-Solís J.F., Dolab J.A., Curci O.H. (2004). Antitoxinas y Antivenenos para uso terapéutico. *Acta Toxicológica Argentina* 12(2): 29-41.
- de Roodt A.R., García S.I., Salomón O.D., Segre L., Dolab J.A., Funes R.F., de Titto E.H. (2003). Epidemiological and clinical aspects of scorpionism by *Tityus trivittatus* in Argentina. *Toxicon* 41(8): 971-977.
- de Roodt A.R., Gimeno E., Portiansky E., Varni L., Dolab J.A., Segre L., Litwin S., Vidal J.C. (2001). A study on the experimental envenomation in mice with the venom of *Tityus trivitattus* Kraepelin 1898 (Scorpiones, Buthidae) captured in Argentina. *Journal of Natural Toxins*, 10(2):99-109.
- de Roodt A.R., Lago N.R., Salomón O.D., Laskowicz R.D., Neder de Román L.E., López R.A., Montero T.E., Vega V. del V. (2009a). A new venomous scorpion responsible for severe envenomation in Argentina: *Tityus confluens. Toxicon* 53(1): 1-8.
- **Deshpande S.B., Alex A.B., Jagannadham M.V., Rao G.R., Tiwari A.K.** (2005). Identification of a novel pulmonary oedema producing toxin from Indian red scorpion (*Mesobuthus tamulus*) venom. *Toxicon* 45(6):735-743.
- **De Titto E.H., García S.I., Haas A.I., Segre L. (1999).** Guía de Centros Antiponzoñosos de la República Argentina. Encuesta 1998-1999. Ministerio de Salud y Acción Social, Buenos Aires, Argentina.

- **Devaux C. & Rochat H. (2002).** Theoretical and experimental bases for treatment of scorpion envenomations *Bull Soc Pathol Exot* 95(3):197-9
- D'Suze G., Comellas A., Pesce L., Sevcik C., Sánchez-de León R. (1999). *Tityus discrepans* venom produces a Respiratory Distress Syndrome in rabbits trough and indirect mechanism. *Toxicon* 37: 173–180.
- **D'Suze G., Sevcik C., Ramos M. (1995).** Presence of curarizing polypeptides and pancreatitis inducing fraction without muscarinic effects in the venom of the Venezuelan scorpion *Tityus discrepans* (Karsch). *Toxicon* 33: 333-345.
- D'Suze G., Salazar V., Diaz P., Sevcik C., Azpurua H., Bracho N. (2004). Histopathological changes and inflammatory response induced by *Tityus discrepans* scorpion venom in rams. *Toxicon*, 44, 851-860.
- Evangelista M., Prada D.B., Pell B., Aita A., Piola J.C. (2003). Incremento de las consultas por escorpionismoen Sertox, Rosario. *Acta Toxicológica Argentina* 11 (2): 96.
- **Evangelista M., Prada D.B., Pezzoto S., Piola J.C. (2003).** Estudio retrospectivo sobre escorpionismo en Rosario, 1990 -2002. *Acta Toxicológica Argentina* 11 (2): 95.
- Fajloun Z., Mosbah A., Carlier E., Mansuelle P., Sandoz G., Fathallah M., Di Luccio E., Devaux C., Rochar H., Darbon H., De Waard M., Sabatier J.M. (2000). Maurotoxin versus Pi1/HsTx1 scorpion toxins. *J. Biol. Chem* 275: 39394–39402.
- **Farmacopea de los Estados Unidos Mexicanos. (2000).** 7º Edición. Editorial Tabacalera, México DF, México.
- Fatani A.J., Furman B.L., Zeitlin I.J. (1998). The involvement of plasma kinins in the cardiovascular effects of *Leiurus quinquestriatus* scorpion venom in anaesthetized rabbits. Toxicon 36(3): 523-536.
- Fletcher M.D., Possani L., Fletcher P.L. (1994). Morphological studies by light and electron microscopy of pancreatic acinary cells under the effect of Tityus serrulatus venom. Cell Tissue Res. 278: 255–264.
- Fletcher P. L., Fletcher M., Fainter L. K., Terrian D. T. (1996). Actions of New World scorpion venom and its neurotoxins in secretion. Toxicon, 34: 1399-1411.
- Freire-Maia L. (1990). Pharmacology of *Tityus* serrulatus scorpion venom. *Mem. Inst. Butantan* 52: 51-57.
- Freire-Maia L., Campos J. A., Amaral C. F. S. (1994). Approaches to the treatment of scorpion envenoming. *Toxicon* 32: 1009-1014.

- **Freire-Maia L. y Campos J.A. (1987).** Response to the Letter to the Editor by Gueron and Ovsyshcher on the treatment of the cardiovascular manifestations of scorpion envenomation. *Toxicon*, 25: 125-130, 1987.
- Freire-Maia & Campos J.A. (1989). Pathophysiology and treatment of scorpionpoisoning. In: Natural Toxins. Characterization, Pharmacology and Therapeutics. Proceedings of the 9th World Congress on Animal, Plant and Microbial Toxins. Stillwater, Oklahoma (Ownby, C. L., Odell, G. V., Ed.) Pergamon Press, Oxford.
- **Freire-Maia & De Matos I.M. (1983).** Heparin or a PAF antagonist (BN-52021) prevents the acute pulmonary edema induced by *Tityus serrulatus scorpion* venom in the rat. *Toxicon* 31(9): 1207-1210.
- **Frossard J.L. y Pastor C. (2002).** Experimental acute pancreatitis: new insights into the pathophysiology. *Front Biosci.* 7: 275–287.
- Frossard J.L., Kwak B., Chanson M., Morel P., Hadengue A., Mach F. (2001). CD40L deficient mice are protected against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. *Gastroenterology* 121: 184–194.
- Frossard J.L., Saluja A., Mach N., Lee H., Bhagat L., Hadengue A., Rubbia-Brandt L., Dranoff G., Steer, M. (2002). *In vivo* evidence for the role of GM-CSF as a mediator in acute pancreatitis-associated lung injury. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 283: 541–548.
- Fukuhara Y.D., Dellalibera-Joviliano R., Cunha F.Q., Reis M.L., Donadi E.A. (2004). The kinin system in the envenomation caused by the *Tityus serrulatus* scorpion sting. *Toxicol Appl Pharmacol*. 196: 390-395.
- Giménez-Gallego G., Navia M.P., Reuben J.P., Katz G.M., Kaczorowsky G.J, García M.L. (1988). Purification, sequence, and model structure of Charybdotoxin a potent selective inhibitor of cacium activated potassium channels. *Proc. Natl. Acad. Sci. USA* 85(10): 3329-3333.
- Gordillo M.E.; Bugliolo A.G., Delloni A. (2000). Escorpionismo en Pediatría. *Arch. Arg. Pediatr.* 98: 296-303.
- Gordon D., Karbat I., Ilan N., Cohen L., Kahn R., Gilles N., Dong K., Stuhmer W., Tytgat J., Gurevitz M. (2007). The differential preference of scorpion alphatoxins for insect or mammalian sodium channels: Implications for improved insect control. *Toxicon*. 49(4):452-72.
- Gordon D., Nitza I., Zilberberg N., Gilles N., Urbach D., Cohen L., Karbat I., Froy O., Gaathon A., Kallen R.G., Benveniste M., Gurevitz M. (2003). An 'Old World' scorpion b-toxin that recognizes both insect and mammalian sodium channels A possible link towards diversification of b-toxins. *Eur. J. Biochem.* 270: 2663–2670.

- Goudet C., Chi C.W., Tytgat, J. (2002). An overview of toxins and genes from the venom of the Asian scorpion *Buthus martensi* Karsch. *Toxicon* 40(9):1239-1258.
- **Gueron M. & Ilia R. (1996).** Non cardiogenic pulmonary oedema after scorpion envomation: a true entity? *Toxicon* 34(4): 393-395.
- Guatimosim S.C., Prado V.F., Diniz C.R., Chavez-Olórtegui C., Kalapothakis E. (1999). Molecular cloning and genomic analysis of TsNTxp: an immunogenic protein from *Tityus serrulatus* scorpion venom. *Toxicon* 37: 507-517.
- Guinand A., Cortes H., D'Suze G., Díaz P., Sevcik C., González-Sponga M, Eduarte G. (2004). Escorpionismo del género *Tityus* en la sierra falconiana y su correlación con la liberación de mediadores inflamatorios y enzimas cardíacas. *Gac Méd Caracas* 112(2): 131-138.
- Gurevitz M., Froy O., Zilberberg N., Turkov M., Strugatsky D., Gershburg E., Lee D., Adams M.E., Tugarinov V., Anglister J., Shaanan B., Loret E., Stankiewicz M., Pelhate M., Gordon D., Chejanovsky N. (1998). Sodium channel modifiers from scorpion venom: structure-activity relationship, mode of action and application. *Toxicon* 36(11): 1671-1682.
- Gurevitz M., Karbat I., Cohen L., Ilan N., Kahn R., Turkov M., Stankiewicz M., Stühmer W., Dong K., Gordon D. (2007). The insecticidal potential of scorpion beta-toxins. *Toxicon*. 49(4): 473-489.
- **Gueron M. e Ilia R. (1996).** Non cardiogenic pulmonary oedema after scorpion envomation: a true entity? *Toxicon* 34(4): 393-395.
- **Gueron M. y Sofer S. (1994).** The role of the intensivist in the treatment of the cardiovascular manifestations of scorpion envenomation. *Toxicon* 32(9): 1027-1029.
- **Gueron M., Margulis G., Sofer S. (1990).** Ecocardiographic and radionucleide angiographic observations following scorpion envenomation by Leiurus quinquestriatus. *Toxicon* 28: 1005-1009.
- Hagag M., Tu A. T., El-Asmar H. F. (1983). Isolation of minax toxins from the venom of the scorpion *Buthus minax* and their metabolic effects *Arch. Biochem. Biophys.* 220: 459-466.
- Harlow E. y Lane D. (1988). Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory. New York.
- Holaday S.K. Jr, Martin B.M., Fletcher P.L. Jr., Krishna N.R. (2000). NMR solution structure of butantoxin. *Arch Biochem Biophys* 379(1):18-27.

- Huys I., Xu C.Q., Wang C.Z., Vacher H., Martin-Eauclaire M.F., Chi C.W. Tytgat J. (2004). BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents. *Biochem. J.* 15 (378[Pt 3]): 745–752.
- **Ismail M. (1995).** The scorpion envenoming syndrome. *Toxicon*, 33:825-858.
- **Ismail M. y Abd EL-Salam A. (1988).** Are the toxicological effects of scorpion envenomation related to tissue venom concentration?. *Toxicon* 26: 233-256.
- **Ismail M., Gumaa K. A., Osman O. H., El-Asmar H. F. (1978).** Effect of *Buthus minax* (L. Koch) scorpion venom on plasma and urinary electrolyte levels. *Toxicon* 16:385-392.
- **Ismail M., Fatani A.J.Y., Dabees T.T. (1992).** Experimental treatment protocols for scorpion envenomation: a review of common therapies and an effect of kallikrein-kinin inhibitors. *Toxicon* 30: 1257-1279.
- **Kalapothakis E. y Chavez-Olórtegui C. (1997).** Venom Variability among several *Tityus serrulatus* specimens. *Toxicon* 35(10): 1523-1529.
- Kharrat R., Mabrouk K., Crest M., Darbon H., Oughideni R., Martin-Eauclaire M.F., Jacquet G., El Ayeb M., van Rietschoten J., Sabatier J. (1996). Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K⁺ channels. Eur. J. Biochem. 242: 491–498.
- Klaiber K., Williams N., Roberts T.M., Papazian D.M., Jan L.Y., Miller C. (1990). Functional expression of Shaker Kb in a baculovirus-infected insect cell line. *Neuron* 5: 221–226.
- Krifi M.N. & El Ayeb M. (1998). An equilibrium ELISA for the dosage of *Androctonus australis garzonii* (Aag) and *Buthus occitanus tunetanus* (Bot) scorpion venoms: set up and calibration. *Arch Inst Pasteur Tunis* 75(3-4): 185-194.
- Krifi M.N., Savin S., Debray M., Bon C., El Ayeb M., Choumet V. (2005). Pharmacokinetic studies of scorpion venom before and after antivenom immunotherapy. *Toxicon* 45(2):187-198.
- **Laemmli U.K. (1970).** Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227: 680-685.
- **Langer S.Z., Adler-Grachinsky E., Almeida A. P., Diniz C.R. (1975).** Prejunctional effects of a purified toxin from the scorpion *Tityus serrulatus*. Release of 3H-noradrenalin and enhancement of transmitter overflow elicited by nerve stimulation. *Naunyn-Schmiedeberg's Arch. Pharmac.* 287: 243-259.

- Laskowicz R.D., Beltramino J.C., Manzanelli V.M., Tomassone R., Mendicino R., de Roodt A.R. (2005). Corporal measures of *Tityus trivittatus*. Acta Toxicol Argent 13(Supl.): 117.
- Laskowicz R.D., de Roodt A.R., Beltramino J.C., Reati G.J., Manzanelli V.M., Tomassone R., Vucharchuc M., Mendicino R. (2005). Study of the size of telsons from *Tityus trivittatus*. *Acta Toxicol Argent* 13(Supl.): 117.
- **Licea A.F., Becerril B., Possani L.D.** (1996). Fab fragments of the monoclonal antibody BCF2 are capable of neutralizing the whole soluble venom from the scorpion *Centruroides noxius* Hoffmann. *Toxicon* 34(8): 843-847
- **Lira Da Silva R.M., Monteiro de Amorin A., Kobler T. (2000).** Envenenamento por *Tityus stigmurus* (Scorpions, Buthidae) no Estado da Bahía, Brasil. *Rev. Soc. Bras. Med. Trop.* 33: 239-245.
- **Lebrun B., Romi-Lebrun R., Martin-Eauclaire M.F., Yasuda A., Ishiguro M., Oyama Y., Pongs O., Nakajima, T. (1997).** A four disulfide-bridged toxin, with high affinity towards voltage-gated K⁺ channels, isolated from *Heterometrus spinnifer* (Scorpionidae) venom. *Biochem. J.* 328: 321–327.
- Lo Vecchio F., Welch S., Klemens J., Curry S.C., Thomas R. (1999). Incidence of immediate and delayed hypersensitivity to *Centruroides* antivenom. *Ann Emerg Med* 34(5):615-619.
- Magalhaes M.M., Pereira M.E.P., Amaral C.F.S., Rezende N.A., Campolina D., Bucaretchi F., Gazzinelli R.T., Cunha-Melo J.R. (1999). Serum levels of cytokines in paitents envenomed by *Tityus serrulatus* scorpion sting. *Toxicon* 37: 1155-1164.
- Maillère B., Mourier G., Hervé M., Cotton J., Leroy S., Ménez A. (1995). Immunogenicity of a disulphide-containing neurotoxin: presentation to T-cells requires a reduction step *Toxicon* 33(4):475-82
- Margni R.A. (1990). Inmunoquímica, 3^{ra} Ed., Cap. 34. El Ateneo, Buenos Aires.
- **Martel Moreno A.T. (2008).** Trastornos del ritmo cardiaco más frecuentes en pediatría. Síndrome del QT alargado. *Pediatr Integral* 12(8): 793-804.
- Martin-Eauclaire M.F., Céard B., Ribeiro A.M., Diniz C.R., Rochat H., Bougis P.E. (1992). Molecular cloning and nucleotide sequence analysis of a cDNA encoding the main beta-neurotoxin from the venom of the South American scorpion *Tityus serrulatus*. FEBS Letters 302(3): 220-222.
- Martino O., Mathet H., Masini R.D., Ibarra Grasso A., Thompson R., Gondell C., Bosch J. (1979). Emponzoñamiento humano provocado por venenos de origen animal. Estudio epidemiológico, clínico y experimental. Ministerio de Bienestar Social de la Nación, Secretaría de Salud. Buenos Aires, Argentina.

- Maury E. A. (1969). *Tityus bahiensis* (Perty 1834) en la Argentina (Scorpiones, Buthidae). Physis, Sec. C, 29: 159-164.
- **Maury E. A. (1970).** Redescripción y distribución en la Argentina de *Tityus trivittatus trivittatus* Kraepelin 1898 (Scorpiones, Buthidae) comentarios sobre sus hábitos domiciliarios y su peligrosidad. Physis, Sec. C, 29 (79): 405-421.
- Maury E. A. (1974). Escorpiofauna chaqueña. 2. *Tityus confluens* Borelli 1899 (Buthidae). Physis (Buenos Aires)sec. C, 33 (86): 85-92.
- **Maury E.A. (1979).** Apuntes para una zoogeografía de la escorpiofauna argentina. *Acta Zool Lilloana* 35: 703-719.
- Maury E.A. (1986). Guía para la identificación de los escorpiones de la Provinvia de Buenos Aires. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Aracnología 6.
- Maury, E.A. (1997). *Tityus trivittatus* en la Argentina. Nuevos datos sobre distribución, partenogénesis, sinantropía y peligrosidad (Escorpiones, Buthidae). *Rev. Museo Arg. Cs. Nat. "Bernardino Rivadavia"* 24.
- Mendes T.M., Dias F., Horta C.C., Pena I.F., Arantes E.C., Kalapothakis E. (2008). Effective *Tityus serrulatus* anti-venom produced using the Ts1 component. *Toxicon* 52(7): 787-973.
- **Miller C. (1995).** The carybdotoxin family of channel blocking peptides. *Neuron* 15: 5-10.
- Ministerio de Salud y Acción Social. Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". (1998). Programa Nacional de Ofidismo y Aracneísmo. Vigilancia Epidemiológica y Control de Ofidismo y Aracneísmo. Aspectos Programáticos (offset).
- **Ministerio de Salud (2005a).** Boletín Epidemiológico Nacional. Envenenamiento por Animales Captítulo 9, pp. 67 75. Ponzoñosos. www.medioambiente.gov.ar/archivos/web/salud_ambiente/File/2004%20Envenen amiento%20por%20Animales%20Ponzo%20osos%20en%20Argentina.pdf
- **Ministerio de Salud (2005b).** Boletín Epidemiológico Periódico, N°19, Marzo de 2005. Ministerio de Salud de la Nación. Buenos Aires, pp. 9, 14.
- **Ministerio de Salud. (2008).** Boletín Epidemiológico Periódico. N° 39, Septiembre Octubre de 2007. Ministerio de Salud de la Nación, Buenos Aires, pp. 6-19.
- Ministerio da Saúde. Fundacáo Nacional de Saúde. (1999). Manual de Diagnóstico e Tratamento de Acidentes por Animais Peconhentos. Brasilia.

- Ministerio de Saúde. (1996). Normas Técnicas de Fabricacao e Controle de Qualidade dos Soros Antiofídicos, Antitóxicos en Antirrábico aprovada pela vigilancia sanitaria. Secretaría de Vigilancia Sanitaria, Ministerio de Saúde.
- Mouhat S., Visan V., Ananthakrishnan S., Wulff H., Andreotti N., Grissmer S., Darbon H., De Waard M. and Sabatier J.M. (2005). K⁺ channel types targeted by synthetic OSK1, a toxin from *Orthochirus scrobiculosus* scorpion venom. *Biochem. J.* 385 (Pt 1): 95–104.
- Murúa F., Acosta L.E., Acosta J.C., Coria C. (2002). Primeros registros de *Tityus trivittatus* Kraepelin (Scorpiones, Buthidae) en el Oeste Argentino. Multequina 11: 75-78.
- National Research Council (2002). Guía para el cuidado y uso de los animales de laboratorio. Institute of Laboratory Animal Resources, Commission of Life Sciences. Academia Nacional de Medicina, Eds. México DF.
- Neder de Román, L.E., Montero, T.E., Arce de Hamity, M.G. (2007). Los Escorpiones de Jujuy. Universidad Nacional de Jujuy, p. 28.
- **Norman, J.G. (1998).** The roles of cytokines in the pathogenesis of acute pancreatitis. *Am. J. Surg.* 175: 76–83.
- Novello J.C., Arante, E.C., Varand, W.A., Oliveri, B., Giglio J.R., Marangoni S. (1999). TsTX-IV, a short chain four disulfide-bridged neurotoxin from *Tityus serrulatus* venom which acts on Ca²⁺-activated K⁺ channels. *Toxicon* 37: 651–660.
- **Ojanguren-Affilastro A.A. (2005).** Estudio monográfico de los escorpiones de la República Argentina. Revista Ibérica de Aracnología 11: 75-241.
- **Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G.B., Possani L.D. (1996).** A novel structural class of K⁺ channel blocking toxin from the scorpion *Pandinus imperator. Biochem J. (Great Br.)* 315: 977–981.
- **Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G.B., Possani L.D. (1998).** Two similar peptides from the venom of the scorpion *Pandinus imperator*, one highly effective blocker and the other inactive on K⁺ channels. Toxicon 36: 759–770.
- Olvera A., Ramos-Cerrillo B., Estévez J., Clement H., de Roodt A., Paniagua-Solís J., Vázquez H., Zavaleta A., Arruz M.S., Stock R.P., Alagón A. (2006). North and South American *Loxosceles* spiders: development of a polyvalent antivenom with recombinant sphingomyelinases D as antigens. *Toxicon* 48(1):64-74.
- Orduna T.A. (1998). Escorpionismo-alacranismo. Experiencia en el Hospital de Infecciosas "F.J. Muñiz", Buenos Aires, Argentina. Período diciembre 1981 a agosto 1998. In: Jornadas Nacionales de Capacitación Científico-Técnicas sobre Escorpionismo "Dr. Emilio Maury", Santiago del Estero, A.N.L.I.S. Eds., pp11-12, Ministerio de Salud y Acción Social, Buenos Aires, Argentina.
- Osnaya-Romero N., De Jesús Medina-Hernández T., Flores-Hernández S.S., León-

- **Rojas G. (2001).** Clinical symptoms observed in children envenomated by scorpion stings, at the Children's Hospital from the state of Morelos, Mexico. *Toxicon 39: 781-785*.
- Ouanes-Besbes L., El Atrous S., Nouira S., Aubrey N., Carayon A., El Ayeb M., Abrough F. (2005). Direct vs. mediated effects of scorpion venom: an experimental study of the effects of a second challenge with scorpion venom. *Intensive Care Med* 31, 441-446.
- Ozkan O., Adiguzel S., Yakistiran S., Filazi A. (2006). Study of the relationship between *Androctonus crassicauda* (Oliver 1897, Scorpiones, Buthidae) venom toxicity and telson size, weight and storing condition. *Journal of Venomous Animal and Toxins including Tropical Diseases* 12(2): 297-309.
- Ozkan O., Kar S., Güven E., Ergun G. (2007). Comparisson of proteins, lethality and immunogenic compounds of Androctonus crassicauda (Olivier 1807) (Scorpiones:Buthidae) venom obtained by different methods. *Journal of Venomous Animal and Toxins including Tropical Diseases* 13(4): 844-856, 2007.
- Pang S.Z., Oberhaus S.M., Rasmussen J.L., Knipple D.C., Bloomquist J.R., Dean D.H., Bowman K.D. & Sanford J.C. (1992). Expression of a gene encoding a scorpion insectotoxin peptide in yeast, bacteria and plants. *Gene* 116(2): 165-172.
- Pantoja J.L., Renner I.G., Abramson S.B., Edmondson H.A. (1983). Production of acute hemorrhagic pancreatitis in the dog using venom of the scorpion *Buthus quinquestriatus*. *Dig Dis Sci.* 28(5):429-439.
- Pearson W.R. & Lipman D.J. (1988). Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85(8): 2444–2448.
- **Peirano S., Vainstub V., Tomassone R. (2000).** Envenenamiento grave por escorpión en pediatría. Abs. 399 En Libro de Resúmenes del 32º Congreso Argentino de Pediatría, Salta.
- **Peretti A. V. (1991).** Comportamiento de apareamiento de *Zabius fuscus* (Thorell) (Scorpiones, Buthidae). Bol. Soc. Biol. Concepción, 62: 123-146. Chile.
- **Peretti A. V. (1992).** El espermatóforo de *Bothriurus bonariensis* (C.L. Koch) (Scorpiones, Bothriuridae): morfología y funcionamiento. *Bol. Soc. Biol. Concepción*, 63: 157-167. Chile.
- **Peretti A. V. (1994).** Comportamiento de relación madre-cría de *Tityus trivittatus* Kraepelin (Buthidae, Scorpiones). *Bol. Soc. Biol. Concepción*, 65: 9-21. Chile.
- **Peretti A. V. (1997).** Alternativas de Gestación y producción de crías en escorpiones argentinos (Arachnida, Scorpiones). *Iheringia, Sér. Zool.*, (82): 25-32. Brasil.
- **Peretti A. V. (1997).** Evidencia de cortejo copulatorio en el orden Scorpiones (Arachnida), con un análisis en *Zabius fuscus* (Buthidae), *Rev. Soc. Entomol. Arg.*, 56: (1-4): 21-30. Argentina.

- **Peretti A. V. & P. Carrera. (2005).** Female control of mating sequences in the mountain scorpion *Zabius fuscus*: males do not use coercion as a response to unreceptive females. *Animal Behaviour*, 69: 453-462. EUA-Inglaterra.
- Pessini A.C., Kanashiro A., Malvar D.C., Machado R.D., Soares D.M., Figueiredo M.J., Kalapothakis E., Souza G.E.P. (2008). Inflammatory mediators involved in the nociceptive and oedematogenic responses induced by *Tityus serrulatus* scorpion venom injected into rat paws. *Toxicon* 52: 729–736
- **Pessini A.C., Santos D.R., Arantes E.C., Souza G.E. (2006).** Mediators involved in the febrile response induced by *Tityus serrulatus* scorpion venom in rats. *Toxicon* 48: 556-566.
- Péter M. Jr., Varga Z., Paneje G., Bene L., Damjanovich S. Pieri C., Possani L.D., Gáspár R. Jr. (1998). Pandinus imperator scorpion venom blocks voltage-gated K⁺ channels in human lymphocytes. Biochem Biophys Res Comm 242(3): 621-625.
- **Piola J.C. (2004).** Escorpiones en Rosario. *Revista de la Comisión de Ecología y Medio Ambiente del Honorable Concejo Municipal de Rosario*, Año 4/Nº7/Diciembre 2004, Págs. 16-18.
- Piola J.C. (2007). Cambios regionales en la Toxicología Clínica: 30 años. *Curso Internacional de Emergencias Toxicológicas*, Lima, Perú, 4-7 de julio, 2007. http://www.cepis.ops-oms.org/bvstox/e/cursos/peru_julio07/dia06/07_Piola.pdf
- **Piola J.C., Evangelista M., Prada D.B. (2003).** Primeros pacientes tratados con antiveneno escorpiónicoen Sertox, Rosario. *Acta Toxicológica Argentina* 11 (2): 94
- **Piola J.C., Prada D.B., Waksman J.C., Evangelista M. (2006).** Increase mortality and morbidity from *TityusTrivitattus* envenomationin Argentina. *Clinical Toxicology* 2006, 651.
- **Pisciotta M., Coronas F.I., Bloch C., Prestipino G., Possani L.D. (2000).** Fast K⁺ currents from cerebellum granular cells are completely blocked by a peptide from *Androctonus australis* Garzoni scorpion venom. *Biochim. Biophys. Acta* 1468: 203–212.
- **Possani L.D. (1995).** Cloning of genes encoding scorpion toxins: an interpretative review. *J. Toxicology Toxins Review* 14(3): 339-357.
- **Possani L.D., Becerril B., Delepierre M., Tytgat J. (1999a).** Scorpion toxins specific for Na⁺-channels. *Eur J Biochem* 264(2): 287-300.
- Possani L.D., Fletcher P.L., Fletcher M., Rode G.S., Mocha-Morales J., Lucas S., Coronas F.V., Alagon A.C., Martin B.M. (1992). Structural and functional characteristics of toxins purified from the venom of the Brazilian scorpion *Tityus serrulatus* Lutz and Melo. Mem. Inst. Butantan 54(2): 35-52.

- Possani L.D., Martin B.M., Fletcher M.D., Fletcher, P.L., (1991). Discharge effect on pancreatic exocrine secretion produced by toxins purified from *Tityus serrulatus* scorpion venom. *J. Biol. Chem.* 266: 3178–3185.
- **Possani L.D., Martin B.M., Svendsen I., Rode G.S., Erickson B.W. (1985).** Scorpion toxins from *Centruroides noxius* and *Tityus serrulatus*. Primary structures and sequence comparison by metric analysis. *Biochem J.* 229(3): 739-750.
- **Possani L.D., Rodríguez de la Vega R.C. (2006).** Scorpion Venom Peptides. Scorpion Venom Peptides. En: *Handbook of Biologically Active Peptides*. Ed. A.J. Kastin. Elsevier, Londres. 2006. Cspítulo 51, pp. 339-354.
- **Possani L.D., Selisko B., Gurrolla G.B. (1999b).** Structure and function of scorpion toxins affecting K⁺ channels. *Perspectives in Drug Discovery and Design* 15/16: 15-40.
- **Possani L.D., Merino E., Corona M., Bolivar F., Becerril B. (2000).** Peptides and genes coding for scorpion toxins that affect ion-channels. *Biochimie* 82(9-10):861-868.
- Purves D., Augustine G.J., Fitzpatrick D., Katz L.C., La-Mantia A-S., McNamara J.O. (2003). Organización del Sistema Nervioso. En *Invitación a la neurociencia*, pág- 11. Panamericana, Buenos Aires, 611pp.
- Ranson J.H., Roses D.F., Fink S.D. (1973). Early respiratory insufficiency in acute pancreatitis. *Ann. Surg.* 178: 75–79.
- Regev A., Rivkin H., Inceoglu B., Gershburg E., Hammock B.D., Gurevitz M., Chejanovsky N. (2003). Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. *FEBS Leters* 537(1-3): 106-110.
- **Rhada Krisna Murthy K. & Hase N.K. (1994).** Scorpion envenoming and the role of insulin. *Toxicon* 32: 1041-1044.
- **Rhada Krishna Murthy K. (2000).** The scorpion envenoming syndrome: a different perspective. The physiological basis of the role of insulin in scorpion envenoming. *J. Venom. Anim. Toxins* 6: 4-51.
- **Rodríguez de la Vega R.C. & Possani L.D. (2004).** Current views on scorpion toxins specific for K⁺ channels. *Toxicon*. 43(8): 865-875.
- Ranson, J.H., Roses, D.F., Fink, S.D. (1973). Early respiratory insufficiency in acute pancreatitis. *Ann. Surg.* 178: 75–79.
- **Real Academia Española (2001).** Diccionario de la lengua española. 22° Edición, Calpe, Madrid.
- Rocha M.M.T. & Furtado M.F.D. (2005). Caracterização individual do veneno de Bothrops alternatus Duméril, Bibron and Duméril en função da distribução

- geográfica no Brasil (Serpentes, Viperidae). Revista Brasileira de Zoología 22: 383-393.
- **Rotschild A.M. & Castania A. (1976).** Contribution of vasopresor and plasma kininogen changes towards acute adrenaline pulmonary edema in the rat. *Naunyn-Schmiedeberg's Archiv. Pharmazie* 295: 177-181.
- **Rothschild A.M., Jones J.C., Castania A. (1976).** Adrenergic and cholinergic control of the activation on the kalicrein-kinin systems in the rat blood. *Adv. Exp. Med. Biol* 70: 197-200.
- **Rothschild A.M., Cordeiro R.S., Castania A. (1986).** Role in kinin in rat epinephrine pulmonary edema (REPE). *Adv. Exp. Med. Biol* 198(B): 443-450.
- Sallusto F., Geginat J., Lanzavecchia A. (2004). Central memory and effector memory T cell subsets: function, generation, and maintenance. *Annu. Rev. Immunol.* 22: 745–763.
- Salomón O.D. & de Roodt A.R. (2001). Scorpions: spontaneous report in 2 reference centers in the city of Buenos Aires, 1997-2000. *Medicina (B Aires)*. 61(4):391-396.
- Santana G.C., Freire A.C.T., Ferreira A.P.L., Chaves- Olórtegui C., Diniz C.R., Freire-Maia L. (1996). Pharmacokinetics of *Tityus serrulatus* scorpion venom determined by enzyme-linked immunosorbent assay in the rat. *Toxicon* 34(9): 1063-1066.
- Saracco A.S., de Roodt A.R., Cabrera A.M., García S.I. (2006). Escorpionismo. ATA Informa, Boletín de la Asociación Toxicológica Argentina 20 (71): 17-23.
- Selisko B., Cosío G., García C., Becerril B., Possani L.D, Horjales E. (2004). Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion *Centruroides noxius* Hoffmann. *Toxicon* 43(1): 43-51.
- Siles Villarroel M., Furlanetto R.S., Rolim Rosa R., Zelante F., Navas J. (1974a). Contribução ao estudo imunoquimico de venenos botrópicos II. Análisis comparativa dos componentes antigénicos comuns de seis especies de venenos botrópicos. *Mem. Inst. Butantan* 33: 31-40.
- Siles Villarroel M.S., Zelante F., Furlanetto R.S., Rolim Rosa R. (1974b). Contribucáo ao estudo imunoquímico de venenos botrópicos I. Analise comparativa dos componentes antigénicos de seis especies de venenos frente a seus respectivos antivenenos, através das técnicas de dupla difusao e imunoelectroforese en gel de agar. Mem. Inst. Butantan 38: 13-30.
- Siles Villarroel M.S., Furlanetto R.S., Rolim Rosa R., Zelante F., Navas J. (1976/77). Contribução ao estudo imunoquímico de venenos botrópicos III.

- Análise dos componentes antigénicos comuns atraves da dupla difusao em gel de agar. *Mem. Inst. Butantan* 40/41: 241-250.
- **Sisson W.D., Polis G.A., Watt D.D. (1990).** Venom Collection and Purification. En: *The Biology of Scorpions*, 2° Ed. A.G. Polis Editor. Stanford University Press. Cap. 11 pág. 459-461; 587 pp.
- **Schagger H. & von Jagow G. (1987).** Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the separation of Proteins in the Range from 1 to 100 kDa. *Analytical Biochemistry* 166: 368-379, **1987**.
- **Sofer S. & Gueron M. (1988).** Respiratory failure in children following envenomation by the scorpion *Leiurus quinquestriatus*. Hemodynamic and neurological aspects. *Toxicon* 26: 931-939.
- Sofer S., Gueron M., White R.M., Lifshitz M., Apte R.N. (1996). Interleukin-6 release following scorpion sting in children. Toxicon 34(3): 389-392.
- Sofer S., Shalev H., Weizman Z., Shahak E., Gueron M. (1991). Acute pancreatitis in children following envenomation by the yellow scorpion *Leiurus quinquestriatus*. *Toxicon* 29(1):125-128.
- Steer M.L. (1989). Classification and pathogenesis of pancreatitis. Surg. Clin. North Am. 69: 467–480.
- Steer M.L. y Meldolesi J. (1988). Pathogenesis of acute pancreatitis. *Annu. Rev. Med.* 39: 95–105.
- Stuhmer W., Stocker M., Sakmann B., Seeburg P., Baumann A., Grupe A., Pongs O. (1988). Potassium channels expressed from rat brain cDNA have delayed rectifier properties. *FEBS Lett.* 242 (1): 199–206.
- **Thai R., Moine G., Desmadril M., Servent D., Tarride J-L., Ménez A., Léonetti M.** (2004). Antigen Stability Controls Antigen Presentation. The Journal of Biological Chemistry 279(48): 50257-50266.
- **Tomassone R. (1994).** Emponzoñamiento por picadura de escorpión. Presentación de cinco casos y revisión bibliográfica. *Rev. Col. Med. Pcia. de Sta. Fe*, 27.
- **Toscano-Gadea C.A. (2004).** Confirmation of parthenogenesis in *Tityus trivittatus* kraepelin 1898. (Scorpiones, Buthidae). The *Journal of Arachnology* 32:866–869.
- Tytgat J., Chandy K.G., Garcia M.L., Gutman G.A., Martin-Eauclaire M.F., van der Walt J.J., Possani L.D. (1999). A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. *Trends Pharmacol Sci* 20(11):444-447.
- Wang J., Chen Z., Du J., Sun Y., Liang A. (2005). Novel insect resistance in *Brassica* napus developed by transformation of chitinase and scorpion toxin genes. *Plant Cell Rep.* 24(9): 549-555.

- Wang C. & St Leger R.J. (2007). A scorpion neurotoxin increases the potency of a fungal insecticide. *Nat Biotechnol* 25(12):1455-1456.
- **World Health Organization (1981).** Progress in the Characterization of Venoms and Standarization of Antivenoms. Offset Publication, WHO, Ginebra.
- Wu J., Luo X., Wang Z., Tian Y., Liang A., Sun Y. (2007). Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (*Heliothis armigera*) larvae. *Biotechnol Lett* 30(3): 547-554.
- Wulff H., Calabresi P.A., Allie R., Yun S., Pennington M., Beeton C., Chandy K.G. (2003). The voltage-gated Kv1.3 K⁺ channel in effector memory T cells as new target for MS. *J. Clin. Invest.* 111 (11): 1703–1713.
- Yao B., Fan Y., Zeng Q., Zhao R. (1996). Insect-resistant tobacco plants expressing insect-specific neurotoxin AaIT. *Chin J Biotechnol*. 12(2): 67-72.
- **Yarom R., Braun K. (1971).** Electron microscopic studies of the myocardial changes produced by scorpion venoms in dogs. *Lab. Invest.* 24: 21-30.