Please use this identifier to cite or link to this item:
https://ri.unsam.edu.ar/handle/123456789/1009
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Folguera, Laura | - |
dc.contributor.author | Zupan, Jure | - |
dc.contributor.author | Cicerone, Daniel | - |
dc.contributor.author | Magallanes, Jorge | - |
dc.date.accessioned | 2019-10-31T21:38:24Z | - |
dc.date.available | 2019-10-31T21:38:24Z | - |
dc.date.issued | 2015-03 | - |
dc.identifier.citation | Folguera, L. et al (2015). Self-Organizing Maps for Imputation of Missing Data in Incomplete Data Matrices. En: Chemometrics and Intelligent Laboratory Systems. Elsevier Science 143, 146-151 | - |
dc.identifier.issn | 0169-7439 | - |
dc.identifier.uri | https://ri.unsam.edu.ar/handle/123456789/1009 | - |
dc.description.abstract | The problem of incomplete data matrices is repeatedly found in large databases; posing a significant obstacle for an effective treatment of data. This paper examines a self-organizing-map (SOM) based method of data imputation under the concept of distance object per one weight; to predict physicochemical parameters of water samples in a data set where concentrations of different analytes were missed. The method was evaluated according to two different possibilities: (a) including vectors of samples with and without missing data in the training data set and (b) pre-training a SOM for a data set with no missing values and then making imputations for a second data set (prediction set) of samples with missing values. Evaluations were made using a surface water data set of 270 samples from Reconquista River; in Buenos Aires Province; Argentina; by artificially setting a range of 17% to 39% of the data to missing. Results were compared to imputations made through professional criteria. SOMs gave reasonable estimates; with no statistically significant differences from estimates made through professional criteria; proving thus to be a suitable time-saving imputation method. | - |
dc.format | application/pdf | - |
dc.format.extent | pp. 146-151 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier Science Bv | - |
dc.rights | info:eu-repo/semantics/restrictedAccess | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | - |
dc.source | Chemometrics and Intelligent Laboratory Systems. 143: 146-151 (2015) Elsevier B.V. | - |
dc.source.uri | http://dx.doi.org/10.1016/j.chemolab.2015.03.002 | - |
dc.subject | CHEMOMETRICS | - |
dc.subject | ARTIFICIAL NEURAL NETWORK | - |
dc.subject | SELF-ORGANIZING MAPS | - |
dc.subject | MISSING DATA IMPUTATION | - |
dc.subject | ENVIRONMENTAL DATA SET | - |
dc.subject.classification | CIENCIAS QUÍMICAS | - |
dc.subject.classification | CIENCIAS EXACTAS Y NATURALES | - |
dc.title | Self-Organizing Maps for Imputation of Missing Data in Incomplete Data Matrices | - |
dc.rights.license | Creative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5) | - |
dc.description.version | info:eu-repo/semantics/publishedVersion | - |
dc.description.filiation | Fil: Laura Folguera. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina. | - |
dc.description.filiation | Fil: Jure Zupan. National Institute of Chemistry; Ljubljana. Slovenia. | - |
dc.description.filiation | Fil: Daniel Cicerone. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina. | - |
dc.description.filiation | Fil: Jorge Magallanes. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina. | - |
dc.type.openaire | info:eu-repo/semantics/article | - |
dc.type.snrd | info:ar-repo/semantics/artículo | - |
item.languageiso639-1 | en | - |
item.fulltext | Con texto completo | - |
item.grantfulltext | reserved | - |
Appears in Collections: | Artículos de investigadores |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
ChemoLab_2015_143_146–151.pdf | Artículo con publicación restringida por embargo | 616.31 kB | Adobe PDF | Request a copy |
This item is licensed under a Creative Commons License